An Efficient Linear Solver for Nonlinear Parameter Identification Problems

In this paper, we study some efficient numerical methods for parameter identifications in elliptic systems. The proposed numerical methods are conducted iteratively and each iteration involves only solving positive definite linear algebraic systems, although the original inverse problems are ill-posed and highly nonlinear. The positive definite systems can be naturally preconditioned with their corresponding block diagonal matrices. Numerical experiments are presented to illustrate the efficiency of the proposed algorithms.

[1]  K. Kunisch,et al.  The augmented lagrangian method for parameter estimation in elliptic systems , 1990 .

[2]  Xuecheng Tai,et al.  Sequential and Parallel Splitting Methods for Bilinear Control Problems in Hilbert Spaces , 1997 .

[3]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[4]  Kazufumi Ito,et al.  Augmented Lagrangian-SQP-Methods in Hilbert Spaces and Application to Control in the Coefficients Problems , 1996, SIAM J. Optim..

[5]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[6]  T. Chan,et al.  On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration , 1999 .

[7]  T. Chan,et al.  Overlapping domain decomposition and multigrid methods for inverse problems , 1998 .

[8]  Kazufumi Ito,et al.  A Numerical Study of an Augmented Lagrangian Method for the Estimation of Parameters in Elliptic Systems , 1991, SIAM J. Sci. Comput..

[9]  T. Chan,et al.  Augmented Lagrangian and total variation methods for recovering discontinuous coefficients from elliptic equations , 1997 .

[10]  Jun Zou,et al.  Numerical identifications of parameters in parabolic systems , 1998 .

[11]  Zhiming Chen,et al.  An Augmented Lagrangian Method for Identifying Discontinuous Parameters in Elliptic Systems , 1999 .

[12]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[13]  D. Dobson,et al.  Convergence of an Iterative Method for Total Variation Denoising , 1997 .

[14]  Xue-Cheng Tai,et al.  Identification of Discontinuous Coefficients in Elliptic Problems Using Total Variation Regularization , 2003, SIAM J. Sci. Comput..

[15]  J. Zou,et al.  Finite Element Methods and Their Convergencefor Elliptic and Parabolic Interface , 1996 .

[16]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[17]  O. Widlund Domain Decomposition Algorithms , 1993 .

[18]  G. Golub,et al.  Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .

[19]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[20]  K.-H. Hoffmann,et al.  Parallel solution of variational inequality problems with nonlinear source terms , 1996 .

[21]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .