A FAST HANKEL SOLVER BASED ON AN INVERSION FORMULA FOR LOEWNER MATRICES

Abstract We propose a new O(n2) algorithm for solving complex n × n linear systems that have Hankel structure. Via FFTs the Hankel system is transformed into a Loewner system. An inversion formula enables us to calculate the inverse of the Loewner matrix explicitely. The parameters that occur in this inversion formula are calculated by solving two rational interpolation problems on the unit circle. We present an O(n2) algorithm to solve these interpolation problems. One of the advantages of this algorithm is that it incorporates pivoting. We have implemented our Hankel solver in Fortran 90. Numerical examples are included. They show the effectiveness of our pivoting strategy.

[1]  Adam W. Bojanczyk,et al.  A Multi-step Algorithm for Hankel Matrices , 1994, J. Complex..

[2]  John G. Lewis,et al.  Proceedings of the Fifth SIAM Conference on Applied Linear Algebra , 1994 .

[3]  Roland W. Freund,et al.  A look-ahead Bareiss algorithm for general Toeplitz matrices , 1994 .

[4]  Thomas Kailath,et al.  Diagonal pivoting for partially reconstructible Cauchy-like Matrices , 1997 .

[5]  Roland W. Freund,et al.  Formally biorthogonal polynomials and a look-ahead Levinson algorithm for general Teoplitz systems , 1993 .

[6]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[7]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[8]  George Labahn,et al.  Computation of Numerical Padé-Hermite and Simultaneous Padé Systems I: Near Inversion of Generalized Sylvester Matrices , 1996, SIAM J. Matrix Anal. Appl..

[9]  G. Szegő,et al.  On the Eigen-Values of Certain Hermitian Forms , 1953 .

[10]  Ali H. Sayed,et al.  Displacement Structure: Theory and Applications , 1995, SIAM Rev..

[11]  George Labahn,et al.  Computation of Numerical Padé-Hermite and Simultaneous Padé Systems II: A Weakly Stable Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[12]  Interpolation und genaherte Quadratur , 1933 .

[13]  Per Christian Hansen,et al.  A Look-Ahead Levinson Algorithm for Indefinite Toeplitz Systems , 1992, SIAM J. Matrix Anal. Appl..

[14]  H. Zha,et al.  A look-ahead algorithm for the solution of general Hankel systems , 1993 .

[15]  P. Dooren,et al.  High performance algorithms for Toeplitz and block Toeplitz matrices , 1996 .

[16]  M. Barel,et al.  Inversion of a block Lo¨wner matrix , 1996 .

[17]  P. Dooren,et al.  A look-ahead Schur algorithm , 1994 .

[18]  Adam W. Bojanczyk,et al.  Transformation Techniques for Toeplitz and Toeplitz-plus-Hankel Matrices Part I. Transformations , 1996 .

[19]  Georg Heinig,et al.  An inversion formula and fast algorithms for Cauchy-Vandermonde matrices , 1993 .

[20]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[21]  L. Reichel Newton interpolation at Leja points , 1990 .

[22]  Adam W. Bojanczyk,et al.  Transformation techniques for Toeplitz and Toeplitz-plus-Hankel matrices , 1996 .

[23]  Israel Gohberg,et al.  Fast state space algorithms for matrix Nehari and Nehari-Takagi interpolation problems , 1994 .

[24]  Thomas Kailath,et al.  Linear complexity parallel algorithms for linear systems of equations with recursive structure , 1987 .

[25]  Thomas Kailath,et al.  Fast Gaussian elimination with partial pivoting for matrices with displacement structure , 1995 .

[26]  Adhemar Bultheel,et al.  A new approach to the rational interpolation problem , 1989 .

[27]  Inverses of Löwner matrices , 1984 .

[28]  Per Christian Hansen,et al.  A look-ahead Levinson algorithm for general Toeplitz systems , 1992, IEEE Trans. Signal Process..

[29]  M. Gutknecht,et al.  LOOK-AHEAD LEVINSON- AND SCHUR-TYPE RECURRENCES IN THE PAD ET ABLE , 1994 .

[30]  Marc Van Barel,et al.  A fast block Hankel solver based on an inversion formula for block Loewner matrices , 1996 .

[31]  Remarks on complexity of polynomial and special matrix computations , 1989 .

[32]  Adhemar Bultheel,et al.  A lookahead algorithm for the solution of block toeplitz systems , 1997 .

[33]  M. Fiedler Hankel and loewner matrices , 1984 .

[34]  Thomas Kailath,et al.  Efficient solution of linear systems of equations with recursive structure , 1986 .

[35]  S. Cabay,et al.  A weakly stable algorithm for Pade´ approximants and the inversion of Hankel matrices , 1993 .

[36]  Karl Löwner Über monotone Matrixfunktionen , 1934 .

[37]  Georg Heinig,et al.  Inversion of generalized Cauchy matrices and other classes of structured matrices , 1995 .

[38]  Martin H. Gutknecht,et al.  Stable row recurrences for the Padé table and generically superfast lookahead solvers for non-Hermitian Toeplitz systems , 1993 .

[39]  Nicholas J. Higham,et al.  Stability analysis of algorithms for solving confluent Vandermonde-like systems , 1990 .

[40]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[41]  Marlis Hochbruck,et al.  Look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems , 1995 .