Optimal quantum states for frequency estimation

We investigate different quantum parameter estimation scenarios in the presence of noise, and identify optimal probe states. For frequency estimation of local Hamiltonians with dephasing noise, we determine optimal probe states for up to 70 qubits, and determine their key properties. We find that the so-called one-axis twisted spin-squeezed states are only almost optimal, and that optimal states need not to be spin-squeezed. For different kinds of noise models, we investigate whether optimal states in the noiseless case remain superior to product states also in the presence of noise. For certain spatially and temporally correlated noise, we find that product states no longer allow one to reach the standard quantum limit in precision, while certain entangled states do. Our conclusions are based on numerical evidence using efficient numerical algorithms which we developed in order to treat permutational invariant systems.

[1]  De-hua Wang,et al.  Recurrence spectra of a helium atom in parallel electric and magnetic fields , 2003 .

[2]  A S Sørensen,et al.  Near-Heisenberg-limited atomic clocks in the presence of decoherence. , 2013, Physical review letters.

[3]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[4]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[6]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[7]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[8]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[9]  Tsvi Piran,et al.  Reviews of Modern Physics , 2002 .

[10]  A S Sørensen,et al.  Stability of atomic clocks based on entangled atoms. , 2004, Physical review letters.

[11]  Kirk McKenzie,et al.  Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection. , 2002, Physical review letters.

[12]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[13]  Andrew G. Glen,et al.  APPL , 2001 .

[14]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[15]  E. Davies,et al.  PROBABILISTIC AND STATISTICAL ASPECTS OF QUANTUM THEORY (North‐Holland Series in Statistics and Probability, 1) , 1984 .

[16]  A S Sørensen,et al.  Heisenberg-limited atom clocks based on entangled qubits. , 2013, Physical review letters.

[17]  C. F. Roos,et al.  ‘Designer atoms’ for quantum metrology , 2006, Nature.

[18]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[19]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[20]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[21]  J I Cirac,et al.  Spin squeezing inequalities and entanglement of N qubit states. , 2005, Physical review letters.

[22]  S. Massar,et al.  Optimal quantum clocks , 1998, quant-ph/9808042.

[23]  M. Lewenstein,et al.  Entanglement enhances security in quantum communication , 2009 .

[24]  F. S. Prout Philosophical Transactions of the Royal Society of London , 2009, The London Medical Journal.

[25]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[26]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[27]  Joseph Fitzsimons,et al.  Magnetic field sensing beyond the standard quantum limit under the effect of decoherence , 2011, 1101.2561.

[28]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[29]  B. Kraus,et al.  Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.

[30]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[31]  C. Helstrom Quantum detection and estimation theory , 1969 .

[32]  A Acín,et al.  Noisy metrology beyond the standard quantum limit. , 2012, Physical review letters.

[33]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[34]  S. Bartlett,et al.  Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement , 2005, quant-ph/0505112.

[35]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[36]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[37]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[38]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[39]  U. Dorner,et al.  Quantum frequency estimation with trapped ions and atoms , 2011, 1102.1361.

[40]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[41]  A. Sørensen,et al.  Efficient atomic clocks operated with several atomic ensembles. , 2013, Physical review letters.

[42]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[43]  Joshua Combes,et al.  States for phase estimation in quantum interferometry , 2005 .

[44]  Giuliano Scarcelli,et al.  Distant Clock Synchronization Using Entangled Photon Pairs , 2004 .

[45]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[46]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[47]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[48]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[49]  Jin-quan Chen Group Representation Theory For Physicists , 1989 .

[50]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[51]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[52]  P. Zoller,et al.  Many-particle entanglement with Bose–Einstein condensates , 2000, Nature.

[53]  M. Lukin,et al.  Quantum error correction for metrology. , 2013, Physical review letters.

[54]  Matthias Rosenkranz,et al.  Parameter estimation with cluster states , 2008, 0812.1747.

[55]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[56]  H. Cramér Mathematical methods of statistics , 1947 .

[57]  V. Buchstaber,et al.  Mathematical Proceedings of the Cambridge Philosophical Society , 1979 .

[58]  A Retzker,et al.  Increasing sensing resolution with error correction. , 2013, Physical review letters.