Inverse design of broadband highly reflective metasurfaces using neural networks

[1]  Vladimir M. Shalaev,et al.  Spatiotemporal light control with active metasurfaces , 2019, Science.

[2]  Ali Adibi,et al.  Deep Learning Reveals Underlying Physics of Light–Matter Interactions in Nanophotonic Devices , 2019, Advanced Theory and Simulations.

[3]  Jingwen Li,et al.  Optimization of hollow-core photonic Bragg fibers towards practical sensing implementations , 2019, Optical Materials Express.

[4]  Jonathan A. Fan,et al.  Review of numerical optimization techniques for meta-device design [Invited] , 2019, Optical Materials Express.

[5]  Steven G. Johnson,et al.  Topology optimization of freeform large-area metasurfaces. , 2019, Optics express.

[6]  Federico Capasso,et al.  Broadband Achromatic Metasurface-Refractive Optics. , 2018, Nano letters.

[7]  Igor Aharonovich,et al.  Optical metasurfaces: new generation building blocks for multi-functional optics , 2018, Light: Science & Applications.

[8]  Sandeep Inampudi,et al.  Neural network based design of metagratings , 2018, Applied Physics Letters.

[9]  Yongmin Liu,et al.  Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials. , 2018, ACS nano.

[10]  W. Cai,et al.  A Generative Model for Inverse Design of Metamaterials , 2018, Nano letters.

[11]  Xu Han,et al.  Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks , 2018, Photonics Research.

[12]  Deep Jariwala,et al.  Materials challenges for the Starshot lightsail , 2018, Nature Materials.

[13]  Andrei Faraon,et al.  A review of dielectric optical metasurfaces for wavefront control , 2018, Nanophotonics.

[14]  M. Sinclair,et al.  An optical metamixer , 2017 .

[15]  Li Jing,et al.  Nanophotonic particle simulation and inverse design using artificial neural networks , 2017, Science Advances.

[16]  Zongfu Yu,et al.  Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures , 2017, 2019 Conference on Lasers and Electro-Optics (CLEO).

[17]  Weijian Yang,et al.  Recent advances in high-contrast metastructures, metasurfaces and photonic crystals , 2017, 1707.07753.

[18]  A. Alú,et al.  Nonlinear metasurfaces: a paradigm shift in nonlinear optics , 2017, 1706.07563.

[19]  Federico Capasso,et al.  Topology-Optimized Multilayered Metaoptics , 2017, 1706.06715.

[20]  Vyas Ramasubramani,et al.  signac - A Simple Data Management Framework , 2016, ArXiv.

[21]  Tiancheng Han,et al.  Ultra-broadband infrared metasurface absorber. , 2016, Optics express.

[22]  A. Shalin,et al.  Magnetic hot-spots in hollow silicon cylinders , 2016 .

[23]  I. Brener,et al.  Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control. , 2015, Nano letters.

[24]  Wei Li,et al.  Large-Scale All-Dielectric Metamaterial Perfect Reflectors , 2015 .

[25]  J. Kong,et al.  Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. , 2014, Nano letters.

[26]  P. Kužel,et al.  Near-field probing of Mie resonances in single TiO2 microspheres at terahertz frequencies. , 2014, Optics express.

[27]  Igal Brener,et al.  Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances , 2014, Nature Communications.

[28]  Brian A. Slovick,et al.  Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector , 2014 .

[29]  Zhi-Gang Yu,et al.  Perfect dielectric-metamaterial reflector , 2013 .

[30]  Eli Yablonovitch,et al.  Adjoint shape optimization applied to electromagnetic design. , 2013, Optics express.

[31]  R. Nadakuditi,et al.  Iterative, backscatter-analysis algorithms for increasing transmission and focusing light through highly scattering random media. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  Shanhui Fan,et al.  S4 : A free electromagnetic solver for layered periodic structures , 2012, Comput. Phys. Commun..

[33]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[34]  Raymond C. Rumpf,et al.  Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention , 2011 .

[35]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[36]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[37]  Koray Aydin,et al.  Highly strained compliant optical metamaterials with large frequency tunability. , 2010, Nano letters.

[38]  Ji Zhou,et al.  Mie resonance-based dielectric metamaterials , 2009 .

[39]  L. Verslegers,et al.  Planar lenses based on nanoscale slit arrays in a metallic film , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[40]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[41]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[42]  Jeremy Witzens,et al.  Self-collimation in planar photonic crystals , 2002 .

[43]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[44]  Man Mohan Rai,et al.  Application of artificial neural networks to the design of turbomachinery airfoils , 1998 .

[45]  S.R.H. Hoole,et al.  Artificial neural networks in the solution of inverse electromagnetic field problems , 1993 .

[46]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[47]  V. Shalaev Optical negative-index metamaterials , 2007 .

[48]  L. Lewin The electrical constants of a material loaded with spherical particles , 1947 .

[49]  T. Gaylord,et al.  Theoretical Analysis of Subwavelength High Contrast Grating Reflectors References and Links , 2022 .