Matrix equations over (R, S)-symmetric and (R, S)-skew symmetric matrices

Let [email protected]?C^m^x^m and [email protected]?C^n^x^n be nontrivial involution matrices; i.e. R=R^-^1 +/-I and S=S^-^1 +/-I. An mxn complex matrix A is said to be a (R,S)-symmetric ((R,S)-skew symmetric) matrix if RAS=A (RAS=-A). The (R,S)-symmetric and (R,S)-skew symmetric matrices have many special properties and are widely used in engineering and scientific computations. In this paper, we consider the matrix equations A"1XB"1=C,A"1X=D"1,XB"2=D"2, and A"1X=D"1,XB"2=D"2,A"3X=D"3,XB"4=D"4, over the (R,S)-symmetric ((R,S)-skew symmetric) matrix X. We derive necessary and sufficient conditions for the existence of (R,S)-symmetric ((R,S)-skew symmetric) solutions for these matrix equations. Also we give the expressions for the (R,S)-symmetric ((R,S)-skew symmetric) solutions to the matrix equations.

[1]  J. W. van der Woude Feedback decoupling and stabilization for linear systems with multiple exogenous variables , 1987 .

[2]  Mohamed A. Ramadan,et al.  On the matrix equation XH=HX and the associated controllability problem , 2007, Appl. Math. Comput..

[3]  Keith G. Woodgate Least-squares solution of F = PG over positive semidefinite symmetric P , 1996 .

[4]  Feng Ding,et al.  Iterative least-squares solutions of coupled Sylvester matrix equations , 2005, Syst. Control. Lett..

[5]  Yongge Tian The solvability of two linear matrix equations , 2000 .

[6]  Feng Ding,et al.  Gradient Based Iterative Algorithms for Solving a Class of Matrix Equations , 2005, IEEE Trans. Autom. Control..

[7]  Feng Ding,et al.  Hierarchical least squares identification methods for multivariable systems , 2005, IEEE Trans. Autom. Control..

[8]  Feng Ding,et al.  On Iterative Solutions of General Coupled Matrix Equations , 2006, SIAM J. Control. Optim..

[9]  Qingwen Wang The general solution to a system of real quaternion matrix equations , 2005 .

[10]  Guang-Ren Duan,et al.  On the generalized Sylvester mapping and matrix equations , 2008, Syst. Control. Lett..

[11]  Mehdi Dehghan,et al.  Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation A1X1B1+A2X2B2=C , 2009, Math. Comput. Model..

[12]  Guang-Jing Song,et al.  A new solvable condition for a pair of generalized Sylvester equations. , 2009 .

[13]  Qing-Wen Wang,et al.  The common solution to six quaternion matrix equations with applications , 2008, Appl. Math. Comput..

[14]  Mehdi Dehghan,et al.  An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices , 2010 .

[15]  Feng Ding,et al.  Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle , 2008, Appl. Math. Comput..

[16]  J. Woude,et al.  A system of real quaternion matrix equations with applications , 2009 .

[17]  Zhi-Bin Yan,et al.  Solutions to right coprime factorizations and generalized Sylvester matrix equations , 2008 .

[18]  Guang-Ren Duan,et al.  Solutions to generalized Sylvester matrix equation by Schur decomposition , 2007, Int. J. Syst. Sci..

[19]  A. B. Ögüler The equation AXB+CYD = E over a principal ideal domain , 1991 .

[20]  K. Chu Symmetric solutions of linear matrix equations by matrix decompositions , 1989 .

[21]  Guang-Ren Duan,et al.  Least squares solution with the minimum-norm to general matrix equations via iteration , 2010, Appl. Math. Comput..

[22]  Mehdi Dehghan,et al.  An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester matrix equations and its optimal approximation , 2008, Appl. Math. Comput..

[23]  Qing-Wen Wang,et al.  Ranks and the least-norm of the general solution to a system of quaternion matrix equations , 2009 .

[24]  M. Dehghan,et al.  Efficient iterative method for solving the second-order sylvester matrix equation EVF 2 -AVF-CV=BW , 2009 .

[25]  William F. Trench,et al.  Minimization problems for (R,S)-symmetric and (R,S)-skew symmetric matrices , 2004 .

[26]  Qingwen Wang,et al.  A System of Matrix Equations and a Linear Matrix Equation Over Arbitrary Regular Rings with Identity , 2003 .

[27]  Feng Yin,et al.  An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB=C , 2008 .

[28]  Mehdi Dehghan,et al.  An iterative algorithm for solving a pair of matrix equations AYB=E, CYD=F over generalized centro-symmetric matrices , 2008, Comput. Math. Appl..

[29]  James Lam,et al.  Gradient-based maximal convergence rate iterative method for solving linear matrix equations , 2010, Int. J. Comput. Math..

[30]  Feng Ding,et al.  Hierarchical gradient-based identification of multivariable discrete-time systems , 2005, Autom..

[31]  Nail Akar,et al.  A common solution to a pair of linear matrix equations over a principal ideal domain , 1991 .

[32]  Mehdi Dehghan,et al.  An efficient algorithm for solving general coupled matrix equations and its application , 2010, Math. Comput. Model..

[33]  Qing-Wen Wang,et al.  Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations , 2005 .

[34]  Guang-Ren Duan,et al.  Weighted least squares solutions to general coupled Sylvester matrix equations , 2009 .

[35]  M. Dehghan,et al.  The general coupled matrix equations over generalized bisymmetric matrices , 2010 .

[36]  Qing-Wen Wang,et al.  A System of Four Matrix Equations over von Neumann Regular Rings and Its Applications , 2005 .

[37]  Qing-Wen Wang,et al.  Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra , 2002 .

[38]  Xiyan Hu,et al.  The solvability conditions for the inverse eigenvalue problems of centro-symmetric matrices☆ , 2003 .

[39]  James Lam,et al.  Convergence of gradient-based iterative solution of coupled Markovian jump Lyapunov equations , 2008, Comput. Math. Appl..

[40]  J. K. Baksalary,et al.  The matrix equation AXB+CYD=E , 1980 .

[41]  Bin Zhou,et al.  A new solution to the generalized Sylvester matrix equation AV-EVF=BW , 2006, Syst. Control. Lett..

[42]  Dai Hua On the symmetric solutions of linear matrix equations , 1990 .

[43]  Hsin-Chu Chen Generalized Reflexive Matrices: Special Properties and Applications , 1998, SIAM J. Matrix Anal. Appl..