Flexible And Topologically Localized Segmentation

One of the most common visualization tasks is the extraction of significant boundaries, often performed with isosurfaces or level set segmentation. Isosurface extraction is simple and can be guided by geometric and topological analysis, yet frequently does not extract the desired boundary. Level set segmentation is better at boundary extraction, but either leads to global segmentation without edges, [CV01], that scales unfavorably in 3D or requires an initial estimate of the boundary from which to locally solve segmentation with edges. We propose a hybrid system in which topological analysis is used for semi-automatic initialization of a level set segmentation, and geometric information bounded topologically is used to guide and accelerate an iterative segmentation algorithm that combines several state-of-the-art level set terms. We thus combine and improve both the flexible isosurface interface and level set segmentation without edges.

[1]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[2]  J Strackee,et al.  Largest contour segmentation: a tool for the localization of spots in confocal images. , 1996, Cytometry.

[3]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[4]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[5]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[6]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[7]  Valerio Pascucci,et al.  Parallel Computation of the Topology of Level Sets , 2003, Algorithmica.

[8]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[9]  Geoff Wyvill,et al.  Data structure forsoft objects , 1986, The Visual Computer.

[10]  Tosiyasu L. Kunii,et al.  Algorithms for Extracting Correct Critical Points and Constructing Topological Graphs from Discrete Geographical Elevation Data , 1995, Comput. Graph. Forum.

[11]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[12]  Jack Snoeyink,et al.  Simplifying flexible isosurfaces using local geometric measures , 2004, IEEE Visualization 2004.

[13]  Bernd Hamann,et al.  Topology-Controlled Volume Rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[14]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[15]  Ken Museth,et al.  Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets , 2006, J. Sci. Comput..

[16]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[17]  David E. Breen,et al.  Algorithms for Interactive Editing of Level Set Models , 2005, Comput. Graph. Forum.

[18]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[19]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[20]  Yuriko Takeshima,et al.  Topological volume skeletonization and its application to transfer function design , 2004, Graph. Model..

[21]  Demetri Terzopoulos,et al.  Topologically adaptable snakes , 1995, Proceedings of IEEE International Conference on Computer Vision.

[22]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[23]  C. Bajaj,et al.  Fast Matching of Volumetric Functions Using Multi-resolution Dual Contour Trees , 2004 .

[24]  Ron Kimmel,et al.  Fast Edge Integration , 2003 .

[25]  Jack Snoeyink,et al.  Path Seeds and Flexible Isosurfaces - Using Topology for Exploratory Visualization , 2003, VisSym.

[26]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[27]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .