Drug resistance in Malaria-in a nutshell

One peek into the history of malaria, shows us that despite many attempts by mankind to counter the development and propagation of malaria, it has always risen back like a ‘phoenix from its ashes’. This has been possible by virtue of the singular ability of the malarial parasite to mutate and evade the actions of various anti-malarial drugs. The emergence of drug resistant malarial parasites by virtue of the various molecular mechanisms, has put the authorities under the cosh and forced the scientists to start generating newer and better anti-malarial drugs. In this review, we have dwelt upon the various molecular mechanisms which have allowed the malarial parasite to develop resistance, as it can serve to educate the scientists in their effort to generate newer anti-malarials.

[1]  S. Croft,et al.  Synthesis and evaluation of cryptolepine analogues for their potential as new antimalarial agents. , 2001, Journal of medicinal chemistry.

[2]  S. Hoffman,et al.  Vivax malaria resistant to treatment and prophylaxis with chloroquine , 1993, The Lancet.

[3]  Sanjay Kumar,et al.  Free heme toxicity and its detoxification systems in human. , 2005, Toxicology letters.

[4]  H. Ginsburg,et al.  Identification of the acidic compartment of Plasmodium falciparum‐infected human erythrocytes as the target of the antimalarial drug chloroquine. , 1984, The EMBO journal.

[5]  Matthew E Falagas,et al.  Insights into infectious disease in the era of Hippocrates. , 2008, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[6]  B. Medhi,et al.  Challenges of drug-resistant malaria , 2014, Parasite.

[7]  C. MacPherson,et al.  Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system , 2014, Nature Biotechnology.

[8]  M. Foley,et al.  Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. , 1998, Pharmacology & therapeutics.

[9]  J. Dame,et al.  Survey of Plasmodium falciparum multidrug resistance-1 and chloroquine resistance transporter alleles in Haiti , 2013, Malaria Journal.

[10]  Leann Tilley,et al.  Identification and Characterization of Heme-interacting Proteins in the Malaria Parasite, Plasmodium falciparum* , 2003, Journal of Biological Chemistry.

[11]  S. Meshnick,et al.  Cytochrome b Mutations That Modify the Ubiquinol-binding Pocket of the Cytochrome bc1 Complex and Confer Anti-malarial Drug Resistance in Saccharomyces cerevisiae* , 2005, Journal of Biological Chemistry.

[12]  D. Greenwood,et al.  The quinine connection. , 1992, The Journal of antimicrobial chemotherapy.

[13]  A. Cowman,et al.  Chemotherapy and drug resistance in malaria. , 1990, International journal for parasitology.

[14]  E. Hsu Reflections on the 'discovery' of the antimalarial qinghao. , 2006, British journal of clinical pharmacology.

[15]  S. Meshnick,et al.  Modeling the molecular basis of atovaquone resistance in parasites and pathogenic fungi. , 2007, Trends in parasitology.

[16]  V. Choubey,et al.  Antimalarial drugs inhibiting hemozoin (β-hematin) formation: A mechanistic update , 2007 .

[17]  X. Su,et al.  Disruption of a Plasmodium falciparum Multidrug Resistance-associated Protein (PfMRP) Alters Its Fitness and Transport of Antimalarial Drugs and Glutathione , 2009, Journal of Biological Chemistry.

[18]  X. Su,et al.  Dissecting the loci of low‐level quinine resistance in malaria parasites , 2004, Molecular microbiology.

[19]  S. Ward,et al.  Chloroquine resistance of Plasmodium falciparum: further evidence for a lack of association with mutations of the pfmdr1 gene. , 1994, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[20]  B. Nilius,et al.  Inhibition of volume-regulated and calcium-activated chloride channels by the antimalarial mefloquine. , 2000, The Journal of pharmacology and experimental therapeutics.

[21]  Y. Wu,et al.  How Chinese scientists discovered qinghaosu (artemisinin) and developed its derivatives? What are the future perspectives? , 1998, Medecine tropicale : revue du Corps de sante colonial.

[22]  D. Fidock,et al.  K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates , 2015, Science.

[23]  K. Saliba,et al.  Role for the plasmodium falciparum digestive vacuole in chloroquine resistance. , 1998, Biochemical pharmacology.

[24]  Dobson Mj Malaria in England: a geographical and historical perspective. , 1994, Parassitologia.

[25]  A F Slater,et al.  Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. , 1993, Pharmacology & therapeutics.

[26]  D. Fidock,et al.  Genetic linkage of pfmdr1 with food vacuolar solute import in Plasmodium falciparum , 2006, The EMBO journal.

[27]  R. Gwilliam,et al.  Sequence of Plasmodium falciparum chromosomes 1, 3–9 and 13 , 2002, Nature.

[28]  Kyle Ra,et al.  Discoverers of quinine. , 1974 .

[29]  K. Kirk,et al.  Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance , 2005, Molecular microbiology.

[30]  R. Basir,et al.  Role of Different Pfcrt and Pfmdr-1 Mutations in Conferring Resistance to Antimalaria Drugs in Plasmodium falciparum , 2014, Malaria research and treatment.

[31]  Jonathan E. Allen,et al.  Sequence of Plasmodium falciparum chromosomes 2, 10, 11 and 14 , 2002, Nature.

[32]  H. Webster,et al.  TYPE II MEFLOQUINE RESISTANCE IN THAILAND , 1982, The Lancet.

[33]  K. Rieckmann,et al.  Mefloquine (WR 142,490) in the treatment of human malaria , 1975, Science.

[34]  M. Fukuda,et al.  Evidence of artemisinin-resistant malaria in western Cambodia. , 2008, The New England journal of medicine.

[35]  L. Canier,et al.  Plasmodium prevalence and artemisinin-resistant falciparum malaria in Preah Vihear Province, Cambodia: a cross-sectional population-based study , 2014, Malaria Journal.

[36]  X. Su,et al.  Artemisinin: Discovery from the Chinese Herbal Garden , 2011, Cell.

[37]  Joanne M. Morrisey,et al.  Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum , 2007, Nature.

[38]  Margaret Humphreys,et al.  Malaria and Rome : a history of malaria in ancient Italy , 2003 .

[39]  D. Saunders,et al.  Dihydroartemisinin-piperaquine failure in Cambodia. , 2014, The New England journal of medicine.

[40]  H. Tinto,et al.  Chloroquine‐resistance molecular markers (Pfcrt T76 and Pfmdr‐1 Y86) and amodiaquine resistance in Burkina Faso , 2008, Tropical medicine & international health : TM & IH.

[41]  P. Stevens Diseases of poverty and the 10/90 Gap , 2008 .

[42]  J. Wootton,et al.  Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. , 2000, Molecular cell.

[43]  H. W. Lee,et al.  Border malaria characters of reemerging vivax malaria in the Republic of Korea. , 1999, The Korean journal of parasitology.

[44]  R. Packard Agricultural development, migrant labor and the resurgence of malaria in Swaziland. , 1986, Social science & medicine.

[45]  S. Canali Researches on thalassemia and malaria in Italy and the origins of the "Haldane hypothesis". , 2008, Medicina nei secoli.

[46]  D. Fidock,et al.  Differences in trans‐stimulated chloroquine efflux kinetics are linked to PfCRT in Plasmodium falciparum , 2007, Molecular microbiology.

[47]  E. Hempelmann,et al.  Bad air, amulets and mosquitoes: 2,000 years of changing perspectives on malaria , 2013, Malaria Journal.

[48]  R. Ridley Malaria: To kill a parasite , 2003, Nature.

[49]  P. Roepe,et al.  Plasmodium falciparum Na+/H+ exchanger activity and quinine resistance. , 2007, Molecular and biochemical parasitology.

[50]  R. N. Brogden,et al.  Mefloquine , 1993, Drugs.

[51]  G. Poinar,et al.  Plasmodium dominicana n. sp. (Plasmodiidae: Haemospororida) from Tertiary Dominican amber , 2005, Systematic Parasitology.

[52]  B. Tekwani,et al.  8-Aminoquinolines: future role as antiprotozoal drugs , 2006, Current opinion in infectious diseases.

[53]  C. Plowe,et al.  Mechanisms of Resistance of Malaria Parasites to Antifolates , 2005, Pharmacological Reviews.

[54]  ACTIVITY of a new antimalarial agent, chloroquine (SN 7618). , 1946, Journal of the American Medical Association.

[55]  A. Cowman,et al.  Nucleotide binding properties of a P-glycoprotein homologue from Plasmodium falciparum. , 1993, Molecular and biochemical parasitology.

[56]  J. Wootton,et al.  Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. , 2001, The Journal of infectious diseases.

[57]  D Payne,et al.  Spread of chloroquine resistance in Plasmodium falciparum. , 1987, Parasitology today.

[58]  David A. Fidock,et al.  Chloroquine Resistance in Plasmodium falciparum Malaria Parasites Conferred by pfcrt Mutations , 2002, Science.

[59]  S. Krishna,et al.  Artemisinins target the SERCA of Plasmodium falciparum , 2003, Nature.

[60]  C. D. Fitch,et al.  The antimalarial drug mefloquine binds to membrane phospholipids , 1982, Antimicrobial Agents and Chemotherapy.

[61]  D. Warhurst,et al.  Lysosomes, pH and the Anti-malarial Action of Chloroquine , 1972, Nature.

[62]  M. Mather,et al.  Mitochondrial evolution and functions in malaria parasites. , 2009, Annual review of microbiology.

[63]  J. Mouchet,et al.  [Malaria in Guiana. II. The characteristics of different foci and antimalarial control]. , 1989, Bulletin de la Societe de pathologie exotique et de ses filiales.

[64]  F. Nosten,et al.  Are Transporter Genes Other than the Chloroquine Resistance Locus (pfcrt) and Multidrug Resistance Gene (pfmdr) Associated with Antimalarial Drug Resistance? , 2005, Antimicrobial Agents and Chemotherapy.

[65]  D. Kwiatkowski,et al.  Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance , 2015, Science.

[66]  B. Genton,et al.  A molecular marker of artemisinin-resistant Plasmodium falciparum malaria , 2013, Nature.

[67]  S. Meshnick,et al.  Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. , 1991, Molecular and biochemical parasitology.

[68]  S. Looareesuwan,et al.  Primaquine-tolerant vivax malaria in Thailand. , 1997, Annals of tropical medicine and parasitology.

[69]  R. Maude,et al.  Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker , 2015, The Lancet. Infectious diseases.

[70]  Pedro Alonso,et al.  Efficacy and safety of intermittent preventive treatment with sulfadoxine-pyrimethamine for malaria in African infants: a pooled analysis of six randomised, placebo-controlled trials , 2009, The Lancet.

[71]  S. Briolant,et al.  Absence of Association between Piperaquine In Vitro Responses and Polymorphisms in the pfcrt, pfmdr1, pfmrp, and pfnhe Genes in Plasmodium falciparum , 2010, Antimicrobial Agents and Chemotherapy.

[72]  S. Ward,et al.  Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum. , 1996, Molecular pharmacology.

[73]  K. Kirk,et al.  Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum , 2000, Nature.

[74]  P. Schlesinger,et al.  Antimalarial agents: mechanisms of action , 1988, Antimicrobial Agents and Chemotherapy.