The clique and coclique numbers' bounds based on the H-eigenvalues of uniform hypergraphs
暂无分享,去创建一个
[1] L. Qi,et al. The Laplacian of a uniform hypergraph , 2015, J. Comb. Optim..
[2] Liqun Qi,et al. The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph , 2013, Discret. Appl. Math..
[3] Guoyin Li,et al. The Z‐eigenvalues of a symmetric tensor and its application to spectral hypergraph theory , 2013, Numer. Linear Algebra Appl..
[4] Jinshan Xie,et al. On the Z‐eigenvalues of the signless Laplacian tensor for an even uniform hypergraph , 2013, Numer. Linear Algebra Appl..
[5] Jinshan Xie,et al. On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs , 2013 .
[6] L. Qi,et al. The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph , 2013, 1304.1315.
[7] L. Qi. H$^+$-Eigenvalues of Laplacian and Signless Laplacian Tensors , 2013, 1303.2186.
[8] Chen Ling,et al. On determinants and eigenvalue theory of tensors , 2013, J. Symb. Comput..
[9] Jinshan Xie,et al. H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph , 2013 .
[10] L. Qi. Symmetric nonnegative tensors and copositive tensors , 2012, 1211.5642.
[11] L. Qi,et al. Algebraic connectivity of an even uniform hypergraph , 2012, J. Comb. Optim..
[12] Tan Zhang,et al. On Spectral Hypergraph Theory of the Adjacency Tensor , 2012, Graphs Comb..
[13] Xiaodong Zhang,et al. Sharp Bounds for the Signless Laplacian Spectral Radius in Terms of Clique Number , 2012, 1209.3214.
[14] Willem H. Haemers,et al. Spectra of Graphs , 2011 .
[15] Joshua N. Cooper,et al. Spectra of Uniform Hypergraphs , 2011, 1106.4856.
[16] Qingzhi Yang,et al. Further Results for Perron-Frobenius Theorem for Nonnegative Tensors II , 2011, SIAM J. Matrix Anal. Appl..
[17] Marcello Pelillo,et al. New Bounds on the Clique Number of Graphs Based on Spectral Hypergraph Theory , 2009, LION.
[18] Michael K. Ng,et al. Finding the Largest Eigenvalue of a Nonnegative Tensor , 2009, SIAM J. Matrix Anal. Appl..
[19] Samuel,et al. A Game-Theoretic Framework for Similarity-Based Data Clustering , 2009 .
[20] Marcello Pelillo,et al. A generalization of the Motzkin–Straus theorem to hypergraphs , 2009, Optim. Lett..
[21] Bolian Liu,et al. The maximum clique and the signless Laplacian eigenvalues , 2008 .
[22] Kung-Ching Chang,et al. Perron-Frobenius theorem for nonnegative tensors , 2008 .
[23] Huiqing Liu,et al. Laplacian spectral bounds for clique and independence numbers of graphs , 2007, J. Comb. Theory, Ser. B.
[24] Vladimir Nikiforov,et al. More spectral bounds on the clique and independence numbers , 2007, J. Comb. Theory B.
[25] B. Bollobás,et al. Cliques and the spectral radius , 2006, J. Comb. Theory B.
[26] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[27] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[28] J. Håstad. Clique is hard to approximate withinn1−ε , 1999 .
[29] Avi Wigderson,et al. On the second eigenvalue of hypergraphs , 1995, Comb..
[30] Herbert S. Wilf,et al. Spectral bounds for the clique and independence numbers of graphs , 1986, J. Comb. Theory, Ser. B.
[31] W. Greub. Linear Algebra , 1981 .
[32] Q. L. H-EIGENVALUES OF LAPLACIAN AND SIGNLESS LAPLACIAN TENSORS , 2014 .
[33] G. Golub,et al. Foundations of numerical multilinear algebra: decomposition and approximation of tensors , 2007 .
[34] J. Håstad. Clique is hard to approximate within n 1-C , 1996 .
[35] Claude Berge,et al. Hypergraphs - combinatorics of finite sets , 1989, North-Holland mathematical library.