The clique and coclique numbers' bounds based on the H-eigenvalues of uniform hypergraphs

In this paper, some inequality relations between the Laplacian/signless Laplacian H-eigenvalues and the clique/coclique numbers of uniform hypergraphs are presented. For a connected uniform hypergraph, some tight lower bounds on the largest Laplacian H + -eigenvalue and signless Laplacian H-eigenvalue related to the clique/coclique numbers are given. And some upper and lower bounds on the clique/coclique numbers related to the largest Laplacian/signless Laplacian H-eigenvalues are obtained. Also some bounds on the sum of the largest/smallest adjacency/Laplacian/signless Laplacian H-eigenvalues of a hypergraph and its complement hypergraph are showed. All these bounds are consistent with what we have known when k is equal to 2.

[1]  L. Qi,et al.  The Laplacian of a uniform hypergraph , 2015, J. Comb. Optim..

[2]  Liqun Qi,et al.  The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph , 2013, Discret. Appl. Math..

[3]  Guoyin Li,et al.  The Z‐eigenvalues of a symmetric tensor and its application to spectral hypergraph theory , 2013, Numer. Linear Algebra Appl..

[4]  Jinshan Xie,et al.  On the Z‐eigenvalues of the signless Laplacian tensor for an even uniform hypergraph , 2013, Numer. Linear Algebra Appl..

[5]  Jinshan Xie,et al.  On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs , 2013 .

[6]  L. Qi,et al.  The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph , 2013, 1304.1315.

[7]  L. Qi H$^+$-Eigenvalues of Laplacian and Signless Laplacian Tensors , 2013, 1303.2186.

[8]  Chen Ling,et al.  On determinants and eigenvalue theory of tensors , 2013, J. Symb. Comput..

[9]  Jinshan Xie,et al.  H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph , 2013 .

[10]  L. Qi Symmetric nonnegative tensors and copositive tensors , 2012, 1211.5642.

[11]  L. Qi,et al.  Algebraic connectivity of an even uniform hypergraph , 2012, J. Comb. Optim..

[12]  Tan Zhang,et al.  On Spectral Hypergraph Theory of the Adjacency Tensor , 2012, Graphs Comb..

[13]  Xiaodong Zhang,et al.  Sharp Bounds for the Signless Laplacian Spectral Radius in Terms of Clique Number , 2012, 1209.3214.

[14]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[15]  Joshua N. Cooper,et al.  Spectra of Uniform Hypergraphs , 2011, 1106.4856.

[16]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors II , 2011, SIAM J. Matrix Anal. Appl..

[17]  Marcello Pelillo,et al.  New Bounds on the Clique Number of Graphs Based on Spectral Hypergraph Theory , 2009, LION.

[18]  Michael K. Ng,et al.  Finding the Largest Eigenvalue of a Nonnegative Tensor , 2009, SIAM J. Matrix Anal. Appl..

[19]  Samuel,et al.  A Game-Theoretic Framework for Similarity-Based Data Clustering , 2009 .

[20]  Marcello Pelillo,et al.  A generalization of the Motzkin–Straus theorem to hypergraphs , 2009, Optim. Lett..

[21]  Bolian Liu,et al.  The maximum clique and the signless Laplacian eigenvalues , 2008 .

[22]  Kung-Ching Chang,et al.  Perron-Frobenius theorem for nonnegative tensors , 2008 .

[23]  Huiqing Liu,et al.  Laplacian spectral bounds for clique and independence numbers of graphs , 2007, J. Comb. Theory, Ser. B.

[24]  Vladimir Nikiforov,et al.  More spectral bounds on the clique and independence numbers , 2007, J. Comb. Theory B.

[25]  B. Bollobás,et al.  Cliques and the spectral radius , 2006, J. Comb. Theory B.

[26]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[27]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[28]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[29]  Avi Wigderson,et al.  On the second eigenvalue of hypergraphs , 1995, Comb..

[30]  Herbert S. Wilf,et al.  Spectral bounds for the clique and independence numbers of graphs , 1986, J. Comb. Theory, Ser. B.

[31]  W. Greub Linear Algebra , 1981 .

[32]  Q. L H-EIGENVALUES OF LAPLACIAN AND SIGNLESS LAPLACIAN TENSORS , 2014 .

[33]  G. Golub,et al.  Foundations of numerical multilinear algebra: decomposition and approximation of tensors , 2007 .

[34]  J. Håstad Clique is hard to approximate within n 1-C , 1996 .

[35]  Claude Berge,et al.  Hypergraphs - combinatorics of finite sets , 1989, North-Holland mathematical library.