Determining Coefficients in a Class of Heat Equations via Boundary Measurements

When $\Omega \subset {\Bbb R}^N$ is a bounded domain, we consider the problem of identifiability of the coefficients $\rho ,A,q$ in the equation $\rho (x)\partial _tu-\mbox{div}(A(x)\nabla u)+q(x)u=0$ from boundary measurements on two pieces $\Gamma _{{\rm in}}$ and $\Gamma _{% {\rm out}}$ of $\partial \Omega $. Provided that $\Gamma _{{\rm in}}$ $\cap $ $\Gamma _{{\rm out}}$ has a nonempty interior, and assuming that $% f(t,\sigma )$ is the given input datum for $(t,\sigma )\in (0,T)\times \Gamma _{{\rm in}}$ and that the corresponding output datum is the thermal flux $A(\sigma )\nabla u(T_0,\sigma )\cdot \mbox{{\bf n}}(\sigma )$ measured at a given time $T_0$ for $\sigma \in \Gamma _{{\rm % out}}$, we prove that knowledge of all possible pairs of input-output data (f,A\nabla u(T_0)\cdot \mbox{{\bf n}}_{\mid \Gamma _{{\rm out}}}) determines uniquely the boundary spectral data of the underlying elliptic operator. Under suitable hypothesis on $\rho ,A,q$, their identifiability is then proved. The same resu...

[1]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[2]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[3]  Russell M. Brown Global Uniqueness in the Impedance-Imaging Problem for Less Regular Conductivities , 1996 .

[4]  Khosrow Chadan,et al.  An Introduction to Inverse Scattering and Inverse Spectral Problems , 1987 .

[5]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[6]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[7]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[8]  Giovanni Alessandrini,et al.  Singular solutions of elliptic equations and the determination of conductivity by boundary measurements , 1990 .

[9]  L. Escauriaza,et al.  C1,? domains and unique continuation at the boundary , 1997 .

[10]  Göran Borg Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe , 1946 .

[11]  N. Levinson,et al.  The Inverse Sturm-Liouville Problem , 1998 .

[12]  Victor Isakov,et al.  On uniqueness of recovery of a discontinuous conductivity coefficient , 1988 .

[13]  C. Kravaris,et al.  Identifiability of spatially-varying conductivity from point observation as an inverse Sturm-Liouville problem , 1986 .

[14]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[15]  G. M. L. Gladwell,et al.  Inverse Problems in Scattering , 1993 .

[16]  R. Kohn,et al.  Determining conductivity by boundary measurements II. Interior results , 1985 .

[17]  Gunther Uhlmann,et al.  Inverse boundary value problems and applications , 1992 .

[18]  Y. Y. Belov,et al.  Inverse Problems for Partial Differential Equations , 2002 .

[19]  Lassi Päivärinta,et al.  An n-dimensional Borg-Levinson theorem for singular potentials , 2002, Adv. Appl. Math..

[20]  Rakesh,et al.  Uniqueness for an inverse problem for the wave equation , 1988 .

[21]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[22]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[23]  V. Isakov Uniqueness and stability in multi-dimensional inverse problems , 1993 .

[24]  J. McLaughlin Analytical methods for recovering coefficients in differential equations from spectral data , 1986 .

[25]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[26]  Sagun Chanillo,et al.  A problem in electrical prospection and a n-dimensional Borg-Levinson theorem , 1990 .