Impact of cement composite filled steel tubes: An experimental, numerical and theoretical treatise

Abstract This paper presents a combined experimental, numerical and theoretical study on the transverse impact behavior for ultra lightweight cement composite (ULCC) filled steel pipe structures. The drop weight impact test investigates the impact behavior of the pipe specimens. The numerical simulation using the non-linear finite element software LS-DYNA agrees closely with the experimental data. Meanwhile, this study develops a theoretical method to predict the impact response for cement composite filled pipes. Compared to the experimental results, the theoretical method provides reasonable predictions on the impact force and the global displacement response for the cement composite filled pipe specimens.

[1]  Chan Ghee Koh,et al.  Impact tests on steel–concrete–steel sandwich beams with lightweight concrete core , 2009 .

[2]  Raphael H. Grzebieta,et al.  Concrete-filled circular steel tubes subjected to pure bending , 2001 .

[3]  B. Uy,et al.  Response of Foam- and Concrete-Filled Square Steel Tubes under Low-Velocity Impact Loading , 2011 .

[4]  Brian Uy,et al.  Transverse impact resistance of hollow and concrete filled stainless steel columns , 2013 .

[5]  A W Beeby,et al.  CONCISE EUROCODE FOR THE DESIGN OF CONCRETE BUILDINGS. BASED ON BSI PUBLICATION DD ENV 1992-1-1: 1992. EUROCODE 2: DESIGN OF CONCRETE STRUCTURES. PART 1: GENERAL RULES AND RULES FOR BUILDINGS , 1993 .

[6]  Lin-Hai Han,et al.  Concrete-filled circular steel tubes subjected to local bearing force: Finite element analysis , 2014 .

[7]  Raphael H. Grzebieta,et al.  Hollow and concrete filled steel hollow sections under transverse impact loads , 2008 .

[8]  Somsak Swaddiwudhipong,et al.  Modelling of Steel Fiber-reinforced Concrete Under Multi-axial Loads , 2006 .

[9]  X. Qian,et al.  A load–indentation formulation for cement composite filled pipe-in-pipe structures , 2015 .

[10]  Yan Xiao,et al.  Flexural strength analysis of non-post-tensioned and post-tensioned concrete-filled circular steel tubes , 2011 .

[11]  Jeffrey A. Packer,et al.  Design guide for rectangular hollow section (RHS) joints under predominantly static loading , 1992 .

[12]  Lin-Hai Han,et al.  Flexural behaviour of concrete-filled steel tubes , 2004 .

[13]  L. Malvar,et al.  A PLASTICITY CONCRETE MATERIAL MODEL FOR DYNA3D , 1997 .

[14]  Lin-Hai Han,et al.  Concrete-filled circular steel tubes subjected to local bearing force: Experiments , 2013 .

[15]  Kamel Chaoui,et al.  An experimental behaviour of concrete-filled steel tubular columns , 2005 .

[16]  W. Ramberg,et al.  Description of Stress-Strain Curves by Three Parameters , 1943 .

[17]  Lin-Hai Han,et al.  Experimental behaviour of square CFST under local bearing forces , 2014 .

[18]  Mete A. Sozen,et al.  Analysis of Circular Concrete-Filled Steel Tube Specimen under Lateral Impact , 2011 .

[19]  J. Wastiels Behaviour of concrete under multiaxial stresses — A review , 1979 .

[20]  L. Javier Malvar,et al.  Review of Strain Rate Effects for Concrete in Tension , 1998 .

[21]  Yan Xiao,et al.  Flexural Behavior of Concrete-Filled Circular Steel Tubes under High-Strain Rate Impact Loading , 2012 .

[22]  Comite Euro-International du Beton,et al.  CEB-FIP Model Code 1990 , 1993 .

[23]  Siew Chin Lee,et al.  Analysis of steel–concrete composite column subject to blast , 2013 .

[24]  Xudong Qian,et al.  Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact , 2014 .

[25]  David Darwin,et al.  Nonlinear Biaxial Stress-Strain Law for Concrete , 1977 .

[26]  Kim J.R. Rasmussen,et al.  Behaviour of high-strength concrete filled steel tubes under transverse impact loading , 2014 .

[27]  J. Y. Richard Liew,et al.  Effect of preload on the axial capacity of concrete-filled composite columns , 2009 .

[28]  W. Goldsmith,et al.  Impact: the theory and physical behaviour of colliding solids. , 1960 .

[29]  Alison Jane Mcmillan,et al.  A new numerical method for the calculation of impact forces , 1991 .

[30]  Bruno Massicotte,et al.  Hypoelastic Tridimensional Model for Nonproportional Loading of Plain Concrete , 1997 .

[31]  Michael R. Bambach,et al.  Design of hollow and concrete filled steel and stainless steel tubular columns for transverse impact loads , 2011 .

[32]  Lin-Hai Han,et al.  Behavior of concrete filled steel tubular (CFST) members under lateral impact: Experiment and FEA model , 2013 .