Comparison of the Scaling Characteristics of Rainfall Derived from Space-Based and Ground-Based Radar Observations

Abstract In view of the importance of tropical rainfall and the ubiquitous need for its estimates in climate modeling, the authors assess the ability of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) to characterize the scaling characteristics of rainfall by comparing the derived results with those obtained from the ground-based radar (GR) data. The analysis is based on 59 months of PR and GR rain rates at three TRMM ground validation (GV) sites: Houston, Texas; Melbourne, Florida; and Kwajalein Atoll, Republic of the Marshall Islands. The authors consider spatial scales ranging from about 4 to 64 km at a fixed temporal scale corresponding to the sensor “instantaneous” snapshots (∼15 min). The focus is on the scaling of the marginal moments, which allows estimation of the scaling parameters from a single scene of data. The standard rainfall products of the PR and the GR are compared in terms of distributions of the scaling parameter estimates, the connection between the scaling pa...

[1]  V. Gupta,et al.  Multiscaling properties of spatial rain-fall and river flow distributions , 1990 .

[2]  Shaun Lovejoy,et al.  Universal Multifractals: Theory and Observations for Rain and Clouds , 1993 .

[3]  B. Mandelbrot,et al.  Fractal properties of rain, and a fractal model , 1985 .

[4]  Soroosh Sorooshian,et al.  On the simulation of infiltration‐ and saturation‐excess runoff using radar‐based rainfall estimates: Effects of algorithm uncertainty and pixel aggregation , 1998 .

[5]  Murugesu Sivapalan,et al.  Tests of a space‐time model of daily rainfall in southwestern Australia based on nonhomogeneous random cascades , 2000 .

[6]  Shaun Lovejoy,et al.  Multifractals, universality classes and satellite and radar measurements of cloud and rain fields , 1990 .

[7]  R. Deidda Rainfall downscaling in a space‐time multifractal framework , 2000 .

[8]  T. N. Krishnamurti,et al.  The status of the tropical rainfall measuring mission (TRMM) after two years in orbit , 2000 .

[9]  K. Okamoto,et al.  Rain profiling algorithm for the TRMM precipitation radar , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[10]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[11]  Pierre Y. Julien,et al.  Runoff sensitivity to temporal and spatial rainfall variability at runoff plane and small basin scales , 1993 .

[12]  Thomas M. Over,et al.  A space‐time theory of mesoscale rainfall using random cascades , 1996 .

[13]  Thomas M. Over,et al.  Statistical Analysis of Mesoscale Rainfall: Dependence of a Random Cascade Generator on Large-Scale Forcing , 1994 .

[14]  Paul L. Smith,et al.  A simple method for estimating convective rain volume over an area , 1981 .

[15]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[16]  Pierre Y. Julien,et al.  Runoff model sensitivity to radar rainfall resolution , 1994 .

[17]  Murugesu Sivapalan,et al.  Linking space–time variability of river runoff and rainfall fields: a dynamic approach , 2001 .

[18]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[19]  Jeffrey A. Jones,et al.  Use of the Surface Reference Technique for Path Attenuation Estimates from the TRMM Precipitation Radar , 2000 .

[20]  Shaun Lovejoy,et al.  Generalized Scale Invariance in the Atmosphere and Fractal Models of Rain , 1985 .

[21]  David T. Bolvin,et al.  Tropical Rainfall Distributions Determined Using TRMM Combined with Other Satellite and Rain Gauge Information , 2000 .

[22]  David B. Wolff,et al.  Ground Validation for the Tropical Rainfall Measuring Mission (TRMM) , 2005 .

[23]  Merab Menabde,et al.  Self‐similar random fields and rainfall simulation , 1997 .

[24]  M. Robinson,et al.  Climatological processing and product development for the TRMM ground validation program , 2000 .

[25]  Merab Menabde Bounded lognormal cascades as quasi-multiaffine random processes , 1998 .

[26]  Julius Goldhirsh,et al.  Rain Cell Size Statistics Derived from Radar Observations at Wallops Island, Virginia , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Efi Foufoula-Georgiou,et al.  Impact of Small-Scale Rainfall Variability on Larger-Scale Spatial Organization of Land–Atmosphere Fluxes , 2001 .

[28]  Estimation of Renyi exponents in random cascades , 1999 .

[29]  V. Gupta,et al.  MODELING SPACE-TIME RAINFALL AT THE MESOSCALE USING RANDOM CASCADES , 2004 .

[30]  J. Janowiak,et al.  The Global Precipitation Climatology Project (GPCP) combined precipitation dataset , 1997 .

[31]  E. Foufoula‐Georgiou,et al.  Linkage of scaling and thermodynamic parameters of rainfall: Results from midlatitude mesoscale convective systems , 1996 .

[32]  D. Rosenfeld,et al.  The Window Probability Matching Method for Rainfall Measurements with Radar , 1994 .

[33]  Effects of underrepresented hydrometeor variability and partial beam filling on microwave brightness temperatures for rainfall retrieval , 2003 .

[34]  Robert F. Adler,et al.  On the Tropical Rainfall Measuring Mission (TRMM) , 1996 .

[35]  Edward C. Waymire,et al.  Multifractal Dimensions and Scaling Exponents for Strongly Bounded Random Cascades , 1992 .

[36]  Walter Hitschfeld,et al.  ERRORS INHERENT IN THE RADAR MEASUREMENT OF RAINFALL AT ATTENUATING WAVELENGTHS , 1954 .

[37]  Edward C. Waymire,et al.  A statistical analysis of mesoscale rainfall as a random cascade , 1993 .

[38]  Thomas M. Over,et al.  On scaling exponents of spatial peak flows from rainfall and river network geometry , 1996 .

[39]  Benjamin Kedem,et al.  An analysis of the threshold method for measuring area-average rainfall. , 1990 .

[40]  D. Priegnitz,et al.  The Area-Time Integral as an Indicator for Convective Rain Volumes , 1984 .

[41]  Toshio Iguchi,et al.  Nonuniform Beamfilling Correction for Spaceborne Radar Rainfall Measurement: Implications from TOGA COARE Radar Data Analysis , 1999 .