Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic PCA
暂无分享,去创建一个
[1] Max Welling,et al. Extreme Components Analysis , 2003, NIPS.
[2] Balázs Kégl,et al. Intrinsic Dimension Estimation Using Packing Numbers , 2002, NIPS.
[3] Juha Karhunen,et al. Representation and separation of signals using nonlinear PCA type learning , 1994, Neural Networks.
[4] Anil K. Jain,et al. An Intrinsic Dimensionality Estimator from Near-Neighbor Information , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[5] K. I. WilliamsDivision,et al. Products of Gaussians and Probabilistic Minor Component Analysis , 2002, Neural Computation.
[6] Charles Bouveyron,et al. Robust supervised classification with mixture models: Learning from data with uncertain labels , 2009, Pattern Recognit..
[7] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[8] Keinosuke Fukunaga,et al. An Algorithm for Finding Intrinsic Dimensionality of Data , 1971, IEEE Transactions on Computers.
[9] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[10] Peter J. Bickel,et al. Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.
[11] Christopher M. Bishop,et al. Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.
[12] Bo Zhang,et al. Intrinsic dimension estimation of manifolds by incising balls , 2009, Pattern Recognit..
[13] R. Cattell. The Scree Test For The Number Of Factors. , 1966, Multivariate behavioral research.
[14] Tom Minka,et al. Automatic Choice of Dimensionality for PCA , 2000, NIPS.
[15] C. Schmid,et al. High-Dimensional Discriminant Analysis , 2005 .
[16] Bernard Chalmond,et al. Nonlinear Modeling of Scattered Multivariate Data and Its Application to Shape Change , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[17] Guillaume Bouchard,et al. Selection of generative models in classification , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[18] Robert P. W. Duin,et al. An Evaluation of Intrinsic Dimensionality Estimators , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[19] Francesco Camastra,et al. Data dimensionality estimation methods: a survey , 2003, Pattern Recognit..
[20] David E. Tyler. Asymptotic Inference for Eigenvectors , 1981 .
[21] Adrian E. Raftery,et al. Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering , 2007, J. Classif..
[22] H. Akaike. A new look at the statistical model identification , 1974 .
[23] Gerald Sommer,et al. Intrinsic Dimensionality Estimation With Optimally Topology Preserving Maps , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[24] Christopher M. Bishop,et al. Bayesian PCA , 1998, NIPS.
[25] Richard M. Everson,et al. Inferring the eigenvalues of covariance matrices from limited, noisy data , 2000, IEEE Trans. Signal Process..
[26] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[27] J. J. Rajan,et al. Model Order Selection For The Singular Value Decomposition And The Discrete Karhunen-Loeve Transform Using A Bayesian Approach , 1997 .
[28] Isobel Claire Gormley,et al. Probabilistic principal component analysis for metabolomic data , 2010, BMC Bioinformatics.
[29] Alexander Basilevsky,et al. Statistical Factor Analysis and Related Methods , 1994 .
[30] Stan Lipovetsky,et al. Latent Variable Models and Factor Analysis , 2001, Technometrics.
[31] Christopher K. I. Williams,et al. Products of Gaussians and Probabilistic Minor Component Analysis , 2002, Neural Computation.
[32] I. Jolliffe. Principal Component Analysis , 2002 .
[33] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[34] Bart J. A. Mertens,et al. Biomarker discovery in MALDI-TOF serum protein profiles using discrete wavelet transformation , 2009, Bioinform..
[35] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[36] Sam T. Roweis,et al. EM Algorithms for PCA and SPCA , 1997, NIPS.