An on-chip power modulator

We report our results on pulse forming line (PFL) based CMOS pulse generator studies. Standard on-chip transmission lines are used as PFLs while CMOS transistors are used as switches. Through simulations, we clarify the effects of switch speed and switch resistance on the generated pulses. In a standard 0.13 μm CMOS process with a 500 μm long PFL, post layout simulations show that pulses of 10.4 ps width can be obtained. Thus, the PFL circuit significantly extends short pulse generation capabilities of CMOS technologies. Much shorter pulses can be generated with more advanced digital CMOS processes and silicon germanium (SiGe) BiCMOS technologies. A CMOS circuit with a 4 mm long PFL is implemented in a commercial 0.13 μm CMOS technology. Pulses of ∼ 160 ps duration and 120–180 mV amplitude on a 50Ω load are obtained when the power supply is tuned from 1.2 V to 2.0V. Possible reasons for low output voltage and long pulse width include measurement instrument limitations and parasitic effects.

[1]  Augusto Gutierrez-Aitken,et al.  An Ultra-Wideband 7-Bit 5 Gsps ADC Implemented in Submicron InP HBT Technology , 2007, 2007 IEEE Compound Semiconductor Integrated Circuits Symposium.

[2]  Thomas W. Crowe,et al.  Novel fabrication of Ti-Pt-Au/GaAs Schottky diodes , 2000 .

[3]  P. Siegel Terahertz Technology , 2001 .

[4]  H. Andersson,et al.  Microfluidic devices for cellomics : a generaloverview of the field , 2004 .

[5]  Dwight L. Woolard,et al.  Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications? , 2005, Proceedings of the IEEE.

[6]  Takeshi Nagashima,et al.  Terahertz Time-Domain Spectroscopy , 2005 .

[7]  Minoru Fujishima,et al.  60 GHz CMOS pulse generator , 2007 .

[8]  A. Hajimiri,et al.  Nonlinear transmission lines for pulse shaping in silicon , 2005, IEEE Journal of Solid-State Circuits.

[9]  Stefan Simion,et al.  Passive devices on GaAs substrate for MMICs applications , 1996, 1996 International Semiconductor Conference. 19th Edition. CAS'96 Proceedings.

[10]  A. Kuthi,et al.  A linear, single-stage, nanosecond pulse generator for delivering intense electric fields to biological loads , 2009, IEEE Transactions on Dielectrics and Electrical Insulation.

[11]  Paul W. Smith,et al.  Transient Electronics: Pulsed Circuit Technology , 2002 .

[12]  Jeff C. Adams,et al.  Electro-optic measurement of GaAs switch voltage during optically activated avalanche , 1994 .

[13]  Robert M. Weikle,et al.  GAAS DEVICES AND CIRCUITS FOR TERAHERTZ APPLICATIONS , 1999 .

[14]  K. Schoenbach,et al.  Bioelectrics-new applications for pulsed power technology , 2001, PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No.01CH37251).

[15]  Raji Sundararajan,et al.  Nanosecond Electroporation: Another Look , 2009, Molecular biotechnology.

[16]  Laura Marcu,et al.  Pulse generators for pulsed electric field exposure of biological cells and tissues , 2003 .

[17]  Pingshan Wang,et al.  Pulsed wave interconnect , 2004, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[18]  A. Hajimiri,et al.  Nonlinear transmission lines for pulse shaping in silicon , 2005, IEEE Journal of Solid-State Circuits.

[19]  M. Kamegawa,et al.  Impulse compression using soliton effects in a monolithic GaAs circuit , 1991 .

[20]  M. Kristiansen,et al.  A review of short pulse generator technology , 2000 .

[21]  Juergen F Kolb,et al.  Nanosecond pulsed electric field generators for the study of subcellular effects , 2006, Bioelectromagnetics.

[22]  Yu Zhu,et al.  Scalable nonlinear resistor model for GaAs MMIC , 2006, 2006 Asia-Pacific Microwave Conference.

[23]  Ravindra P. Joshi,et al.  Ultrashort electrical pulses open a new gateway into biological cells , 2004 .

[24]  M. Rodwell,et al.  DC - 725 GHz sampling circuits and subpicosecond nonlinear transmission lines using elevated coplanar waveguide , 1995, IEEE Microwave and Guided Wave Letters.