Folded DNA in Action: Hairpin Formation and Biological Functions in Prokaryotes

SUMMARY Structured forms of DNA with intrastrand pairing are generated in several cellular processes and are involved in biological functions. These structures may arise on single-stranded DNA (ssDNA) produced during replication, bacterial conjugation, natural transformation, or viral infections. Furthermore, negatively supercoiled DNA can extrude inverted repeats as hairpins in structures called cruciforms. Whether they are on ssDNA or as cruciforms, hairpins can modify the access of proteins to DNA, and in some cases, they can be directly recognized by proteins. Folded DNAs have been found to play an important role in replication, transcription regulation, and recognition of the origins of transfer in conjugative elements. More recently, they were shown to be used as recombination sites. Many of these functions are found on mobile genetic elements likely to be single stranded, including viruses, plasmids, transposons, and integrons, thus giving some clues as to the manner in which they might have evolved. We review here, with special focus on prokaryotes, the functions in which DNA secondary structures play a role and the cellular processes giving rise to them. Finally, we attempt to shed light on the selective pressures leading to the acquisition of functions for DNA secondary structures.

[1]  F. de la Cruz,et al.  Differential roles of the transposon termini in IS91 transposition. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[2]  K. Arai,et al.  A general priming system employing only dnaB protein and primase for DNA replication. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[3]  K. Arai,et al.  F rpo : A Novel Single-Stranded DNA Promoter for Transcription and for Primer RNA Synthesis of DNA Replication , 1997, Cell.

[4]  K. Kazmierczak,et al.  Identification of Bacteriophage N4 Virion RNA Polymerase-Nucleic Acid Interactions in Transcription Complexes* , 2009, Journal of Biological Chemistry.

[5]  S. Khan,et al.  Plasmid rolling circle replication: identification of the RNA polymerase‐directed primer RNA and requirement for DNA polymerase I for lagging strand synthesis , 1997, The EMBO journal.

[6]  R. G. Lloyd,et al.  The DNA replication protein PriA and the recombination protein RecG bind D-loops. , 1997, Journal of molecular biology.

[7]  K. Tanaka,et al.  Functional division and reconstruction of a plasmid replication origin: molecular dissection of the oriV of the broad-host-range plasmid RSF1010. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Khan,et al.  Lagging-Strand Replication from the ssoA Origin of Plasmid pMV158 in Streptococcus pneumoniae: In Vivo and In Vitro Influences of Mutations in Two ConservedssoA Regions , 1998, Journal of bacteriology.

[9]  M. Waldor,et al.  Mobile Antibiotic Resistance Encoding Elements Promote Their Own Diversity , 2009, PLoS genetics.

[10]  W. Reznikoff,et al.  DNA requirements at the bacteriophage G4 origin of complementary-strand DNA synthesis , 1986, Journal of virology.

[11]  C. Benham,et al.  Extrusion of an imperfect palindrome to a cruciform in superhelical DNA: complete determination of energetics using a statistical mechanical model. , 2002, Journal of molecular biology.

[12]  R M Hall,et al.  Gene cassettes: a new class of mobile element. , 1995, Microbiology.

[13]  P. Model,et al.  Genetic analysis of the filamentous bacteriophage packaging signal and of the proteins that interact with it , 1989, Journal of virology.

[14]  G. Fichant,et al.  A Key Presynaptic Role in Transformation for a Widespread Bacterial Protein: DprA Conveys Incoming ssDNA to RecA , 2007, Cell.

[15]  T. Ha,et al.  SSB protein diffusion on single-stranded DNA stimulates RecA filament formation , 2009, Nature.

[16]  J. Wang,et al.  Transcription and DNA supercoiling. , 1993, Current opinion in genetics & development.

[17]  L. Rothman-Denes,et al.  Supercoil-induced extrusion of a regulatory DNA hairpin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Roger Woodgate,et al.  The SOS Response , 1998 .

[19]  A. Courey,et al.  Cruciform formation in a negatively supercoiled DNA may be kinetically forbidden under physiological conditions , 1983, Cell.

[20]  W. J. Brammar,et al.  The activity of a single‐stranded promoter of plasmid ColIb‐P9 depends on its secondary structure , 2004, Molecular microbiology.

[21]  Z. Livneh,et al.  UV light induces IS10 transposition in Escherichia coli. , 1998, Genetics.

[22]  W. J. Brammar,et al.  Transient transcriptional activation of the IncI1 plasmid anti‐restriction gene (ardA) and SOS inhibition gene (psiB) early in conjugating recipient bacteria , 1999, Molecular microbiology.

[23]  A. Higashitani,et al.  Recognition mechanisms of the minus‐strand origin of phage f1 by Escherichia coli RNA polymerase , 1996, Genes to cells : devoted to molecular & cellular mechanisms.

[24]  C. E. Pearson,et al.  Inverted repeats, stem‐loops, and cruciforms: Significance for initiation of DNA replication , 1996, Journal of cellular biochemistry.

[25]  S. Lovett,et al.  Cis and trans-acting effects on a mutational hotspot involving a replication template switch. , 2006, Journal of molecular biology.

[26]  Structural Features of Single-Stranded Integron Cassette attC Sites and Their Role in Strand Selection , 2009, PLoS genetics.

[27]  H. Zentgraf,et al.  Transposition of a DNA sequence determining kanamycin resistance into the single-stranded genome of bacteriophage fd , 1978, Molecular and General Genetics MGG.

[28]  A. Monzingo,et al.  The structure of the minimal relaxase domain of MobA at 2.1 A resolution. , 2007, Journal of molecular biology.

[29]  D. Lilley,et al.  Influence of cation size and charge on the extrusion of a salt-dependent cruciform. , 1987, Journal of molecular biology.

[30]  D. Dubnau,et al.  DNA uptake in bacteria. , 1999, Annual review of microbiology.

[31]  Effect of base composition at the center of inverted repeated DNA sequences on cruciform transitions in DNA. , 1988, The Journal of biological chemistry.

[32]  G. Cambray,et al.  The SOS Response Controls Integron Recombination , 2009, Science.

[33]  K. Schnetz,et al.  Lac and lambda repressors relieve silencing of the Escherichia coli bgl promoter. Activation by alteration of a repressing nucleoprotein complex. , 1998, Journal of molecular biology.

[34]  Derrick E. Fouts,et al.  Comparative ICE Genomics: Insights into the Evolution of the SXT/R391 Family of ICEs , 2009, PLoS genetics.

[35]  M. Zannis‐Hadjopoulos,et al.  14-3-3 cruciform-binding proteins as regulators of eukaryotic DNA replication. , 2008, Trends in biochemical sciences.

[36]  R. G. Lloyd,et al.  Escherichia coli sbcC mutants permit stable propagation of DNA replicons containing a long palindrome. , 1988, Gene.

[37]  R. Ghirlando,et al.  National Institutes of Health , 2019, The Grants Register 2022.

[38]  F. Dyda,et al.  Resetting the site: redirecting integration of an insertion sequence in a predictable way. , 2009, Molecular cell.

[39]  F. Dyda,et al.  Mechanism of IS200/IS605 Family DNA Transposases: Activation and Transposon-Directed Target Site Selection , 2008, Cell.

[40]  T. Komano,et al.  RepB' is required in trans for the two single-strand DNA initiation signals in oriV of plasmid RSF1010. , 1989, Gene.

[41]  R. Heller,et al.  Replication fork reactivation downstream of a blocked nascent leading strand , 2006, Nature.

[42]  Bernard Martin,et al.  Induction of competence regulons as a general response to stress in gram-positive bacteria. , 2006, Annual review of microbiology.

[43]  J. Jiricny,et al.  d(GATC) sequences influence Escherichia coli mismatch repair in a distance-dependent manner from positions both upstream and downstream of the mismatch. , 1988, Nucleic acids research.

[44]  M. Lucas,et al.  Recognition and processing of the origin of transfer DNA by conjugative relaxase TrwC , 2003, Nature Structural Biology.

[45]  G. I. Aleshkin,et al.  High and low UV-dose responses in SOS-induction of the precise excision of transposons tn1, Tn5 and Tn10 in Escherichia coli. , 1998, Mutation research.

[46]  D. Berg,et al.  Transposable Element ISHp608 of Helicobacter pylori: Nonrandom Geographic Distribution, Functional Organization, and Insertion Specificity , 2002, Journal of bacteriology.

[47]  D. Lilley The kinetic properties of cruciform extrusion are determined by DNA base-sequence. , 1985, Nucleic acids research.

[48]  K. Carr,et al.  Escherichia coli DnaA Protein Loads a Single DnaB Helicase at a DnaA Box Hairpin* , 2002, The Journal of Biological Chemistry.

[49]  G. Volckaert,et al.  Precise and nearly-precise excision of the symmetrical inverted repeats of Tn5; common features of recA-independent deletion events in Escherichia coli. , 1982, Gene.

[50]  Manuel Espinosa,et al.  Plasmids Replication and Control of Circular Bacterial , 1998 .

[51]  K. Arai,et al.  Identification of eleven single-strand initiation sequences (ssi) for priming of DNA replication in the F, R6K, R100 and ColE2 plasmids. , 1991, Gene.

[52]  Howard B. Gamper,et al.  A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes , 1982, Cell.

[53]  Xuejun Huang,et al.  sigma factor mutations affecting the sequence-selective interaction of RNA polymerase with -10 region single-stranded DNA , 1997, Nucleic Acids Res..

[54]  S. Kowalczykowski,et al.  Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. , 1987, Journal of molecular biology.

[55]  R. Sinden,et al.  Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli , 1991, Nature.

[56]  M. Gellert,et al.  Communication between segments of DNA during site-specific recombination , 1987, Nature.

[57]  A. Ninfa,et al.  DNA supercoiling allows enhancer action over a large distance , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  ro Jorge Serment-Guerrero,et al.  The SOS response of Escherichia coli , 2005 .

[59]  R. Sinden,et al.  Influence of global DNA topology on cruciform formation in supercoiled DNA. , 2004, Journal of molecular biology.

[60]  D. Lilley,et al.  The mechanism of cruciform formation in supercoiled DNA: initial opening of central basepairs in salt-dependent extrusion. , 1987, Nucleic acids research.

[61]  Anna B. Rachlin,et al.  Cellular pathways controlling integron cassette site folding , 2010, The EMBO journal.

[62]  A. Kornberg,et al.  The rho subunit of RNA polymerase holoenzyme confers specificity in priming M13 viral DNA replication. , 1982, The Journal of biological chemistry.

[63]  K. Kreuzer Interplay between DNA replication and recombination in prokaryotes. , 2005, Annual review of microbiology.

[64]  D. Kohda,et al.  Escherichia coli PriA Protein, Two Modes of DNA Binding and Activation of ATP Hydrolysis* , 2007, Journal of Biological Chemistry.

[65]  Yan Boucher,et al.  Integrons: mobilizable platforms that promote genetic diversity in bacteria. , 2007, Trends in microbiology.

[66]  Z. Baharoglu,et al.  Conjugative DNA Transfer Induces the Bacterial SOS Response and Promotes Antibiotic Resistance Development through Integron Activation , 2010, PLoS genetics.

[67]  Vincent Burrus,et al.  Shaping bacterial genomes with integrative and conjugative elements. , 2004, Research in microbiology.

[68]  Mario Juhas,et al.  Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence , 2008, Cellular microbiology.

[69]  M. Lucas,et al.  Analysis of DNA processing reactions in bacterial conjugation by using suicide oligonucleotides , 2007, The EMBO journal.

[70]  K. Timmis,et al.  An inhibitor of SOS induction, specified by a plasmid locus in Escherichia coli. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[71]  I. Konieczny Strategies for helicase recruitment and loading in bacteria , 2003, EMBO reports.

[72]  Didier Mazel,et al.  Structural basis for broad DNA-specificity in integron recombination , 2006, Nature.

[73]  M. Griep,et al.  Primase from Escherichia coli primes single-stranded templates in the absence of single-stranded DNA-binding protein or other auxiliary proteins. Template sequence requirements based on the bacteriophage G4 complementary strand origin and Okazaki fragment initiation sites. , 1993, The Journal of biological chemistry.

[74]  K. Tanaka,et al.  A base-paired hairpin structure essential for the functional priming signal for DNA replication of the broad host range plasmid RSF1010. , 1993, Nucleic acids research.

[75]  J. Schvartzman,et al.  A topological view of the replicon , 2004, EMBO reports.

[76]  S. Kowalczykowski In vitro reconstitution of homologous recombination reactions , 1994, Experientia.

[77]  R. Sinden,et al.  A cruciform structural transition provides a molecular switch for chromosome structure and dynamics. , 2000, Journal of molecular biology.

[78]  D. Sherratt,et al.  The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. , 2005, Molecular cell.

[79]  J. Platt POSSIBLE SEPARATION OF INTERTWINED NUCLEIC ACID CHAINS BY TRANSFER-TWIST. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Ishizaki Ryotaro,et al.  Identification of eleven single-strand initiation sequences (ssi) for priming of DNA replication in the F, R6K, R100 and ColE2 plasmids. , 1991 .

[81]  A. Bacolla,et al.  Non-B DNA structure-induced genetic instability and evolution , 2009, Cellular and Molecular Life Sciences.

[82]  M. Mukerji,et al.  Transcriptional activation of the Escherichia coli bgl operon: negative regulation by DNA structural elements near the promoter , 1995, Molecular microbiology.

[83]  J. Bargonetti,et al.  Initiation of rolling-circle replication in pT181 plasmid: initiator protein enhances cruciform extrusion at the origin. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Nikos Panayotatos,et al.  Cruciform structures in supercoiled DNA , 1981, Nature.

[85]  M. O’Donnell,et al.  DNA replication: keep moving and don't mind the gap. , 2006, Molecular cell.

[86]  W. Kelley,et al.  Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon , 2006, Molecular microbiology.

[87]  T. Komano,et al.  Two single-strand DNA initiation signals located in the oriV region of plasmid RSF1010. , 1988, Gene.

[88]  Tsutomu Katayama,et al.  Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC , 2010, Nature Reviews Microbiology.

[89]  J. Schildbach,et al.  Roles of Active Site Residues and the HUH Motif of the F Plasmid TraI Relaxase* , 2007, Journal of Biological Chemistry.

[90]  G. W. Hatfield,et al.  DNA topology-mediated control of global gene expression in Escherichia coli. , 2002, Annual review of genetics.

[91]  S. Kowalczykowski,et al.  Biochemistry of homologous recombination in Escherichia coli. , 1994, Microbiological reviews.

[92]  K. Drlica,et al.  DNA supercoiling and prokaryotic transcription , 1989, Cell.

[93]  Joshua Lederberg,et al.  Gene Recombination in the Bacterium Escherichia coli , 1947, Journal of bacteriology.

[94]  K. Arai,et al.  The ABC-primosome. A novel priming system employing dnaA, dnaB, dnaC, and primase on a hairpin containing a dnaA box sequence. , 1990, The Journal of biological chemistry.

[95]  S. Mirkin,et al.  Transcriptionally driven cruciform formation in vivo. , 1992, Nucleic acids research.

[96]  R. Sinden,et al.  Perfect palindromic lac operator DNA sequence exists as a stable cruciform structure in supercoiled DNA in vitro but not in vivo. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[97]  J. Schildbach,et al.  Structural insights into single-stranded DNA binding and cleavage by F factor TraI. , 2003, Structure.

[98]  B. Wilkins,et al.  Zygotic induction of plasmid ssb and psiB genes following conjugative transfer of Incl1 plasmid Collb‐P9 , 1992, Molecular microbiology.

[99]  S. Inouye,et al.  Retrons, msDNA, and the bacterial genome , 2005, Cytogenetic and Genome Research.

[100]  A. Roth,et al.  SOS induction in Escherichia coli by infection with mutant filamentous phage that are defective in initiation of complementary-strand DNA synthesis , 1992, Journal of bacteriology.

[101]  A. Sali,et al.  Filamentous phage assembly: variation on a protein export theme. , 1997, Gene.

[102]  R. Fuchs,et al.  Uncoupling of Leading- and Lagging-Strand DNA Replication During Lesion Bypass in Vivo , 2003, Science.

[103]  T. C. Nelson Kinetics of genetic recombination in Escherichia coli. , 1951, Genetics.

[104]  T. Steitz,et al.  Structure of a transcribing T7 RNA polymerase initiation complex. , 1999, Science.

[105]  Eugene V. Koonin,et al.  Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria , 1992, Nucleic Acids Res..

[106]  W. Bauer,et al.  Superhelical DNA with local substructures. A generalization of the topological constraint in terms of the intersection number and the ladder-like correspondence surface. , 1987, Journal of molecular biology.

[107]  Didier Mazel,et al.  Integron cassette insertion: a recombination process involving a folded single strand substrate , 2005, The EMBO journal.

[108]  J. Claverys,et al.  The genetic transformation machinery: composition, localization, and mechanism. , 2009, FEMS microbiology reviews.

[109]  A. Higashitani,et al.  Minus-strand origin of filamentous phage versus transcriptional promoters in recognition of RNA polymerase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[110]  G. Godson,et al.  Structure of the Escherichia coli primase/single-strand DNA-binding protein/phage G4oric complex required for primer RNA synthesis. , 1998, Journal of molecular biology.

[111]  K. Arai,et al.  DnaA- and PriA-dependent primosomes: two distinct replication complexes for replication of Escherichia coli chromosome. , 1996, Frontiers in bioscience : a journal and virtual library.

[112]  R. Bowater,et al.  SOS repair and DNA supercoiling influence the genetic stability of DNA triplet repeats in Escherichia coli. , 2007, Journal of molecular biology.

[113]  John W. Beaber,et al.  SOS response promotes horizontal dissemination of antibiotic resistance genes , 2004, Nature.

[114]  B. Das,et al.  Molecular keys of the tropism of integration of the cholera toxin phage , 2010, Proceedings of the National Academy of Sciences.

[115]  R. Sinden,et al.  Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells. , 1991, Journal of molecular biology.

[116]  F. Dyda,et al.  In vitro reconstitution of a single-stranded transposition mechanism of IS608. , 2008, Molecular cell.

[117]  S. Bolland,et al.  Structural and functional analysis of the origin of conjugal transfer of the broad-host-range IneW plasmid R388 and comparison with the related IncN plasmid R46 , 1991, Molecular and General Genetics MGG.

[118]  P. Hsieh,et al.  Molecular mechanisms of DNA mismatch repair. , 2001, Mutation research.

[119]  J. Hurwitz,et al.  Association of phiX174 DNA-dependent ATPase activity with an Escherichia coli protein, replication factor Y, required for in vitro synthesis of phiX174 DNA. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[120]  Karen N. Allen,et al.  On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo. , 1991, Genetics.

[121]  M. Waldor,et al.  Mobilization of Plasmids and Chromosomal DNA Mediated by the SXT Element, a Constin Found in Vibrio cholerae O139 , 2000, Journal of bacteriology.

[122]  S. Mirkin,et al.  Formation of (dA-dT)n cruciforms in Escherichia coli cells under different environmental conditions , 1991, Journal of bacteriology.

[123]  R. Wells,et al.  Topoisomerase mutants and physiological conditions control supercoiling and Z-DNA formation in vivo. , 1991, The Journal of biological chemistry.

[124]  B. Emanuel,et al.  Chromosomal Translocations Mediated by Palindromic DNA , 2006, Cell cycle.

[125]  D. Dubnau,et al.  The Ins and Outs of DNA Transfer in Bacteria , 2005, Science.

[126]  C. Drainas,et al.  A classification scheme for mobilization regions of bacterial plasmids. , 2004, FEMS microbiology reviews.

[127]  Jakub Bielnicki,et al.  Cleavage of bacteriophage lambda cI repressor involves the RecA C-terminal domain. , 2009, Journal of molecular biology.

[128]  M. Gefter,et al.  DNA Replication , 2019, Advances in Experimental Medicine and Biology.

[129]  D. Ussery,et al.  Estimation of superhelical density in vivo from analysis of the level of cruciforms existing in living cells. , 1991, Journal of molecular biology.

[130]  J. Claverys,et al.  Use of a cloned DNA fragment to analyze the fate of donor DNA in transformation of Streptococcus pneumoniae , 1984, Journal of bacteriology.

[131]  F. de la Cruz,et al.  The IntI1 Integron Integrase Preferentially Binds Single-Stranded DNA of the attC Site , 1999, Journal of bacteriology.

[132]  S. Hirose,et al.  Possible Roles of DNA Supercoiling in Transcription , 2005 .

[133]  Nicholas R. Cozzarelli,et al.  DNA topology and its biological effects , 1990 .

[134]  E. Gueguen,et al.  The transpososome: control of transposition at the level of catalysis. , 2005, Trends in microbiology.

[135]  L. Loeb,et al.  An E. coli promoter that regulates transcription by DNA superhelix-induced cruciform extrusion. , 1988, Science.

[136]  K. Murakami,et al.  Structural basis for DNA-hairpin promoter recognition by the bacteriophage N4 virion RNA polymerase. , 2008, Molecular cell.

[137]  S. Kowalczykowski,et al.  RecBCD Enzyme and the Repair of Double-Stranded DNA Breaks , 2008, Microbiology and Molecular Biology Reviews.

[138]  Ariel B. Lindner,et al.  Neurokinin 1 Receptor Antagonism as a Possible Therapy for Alcoholism , 2008, Science.

[139]  N. Higgins,et al.  Growth Rate Toxicity Phenotypes and Homeostatic Supercoil Control Differentiate Escherichia coli from Salmonella enterica Serovar Typhimurium , 2007, Journal of bacteriology.

[140]  Fernando de la Cruz,et al.  Conjugative DNA metabolism in Gram-negative bacteria. , 2010, FEMS microbiology reviews.

[141]  D. Leach Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair , 1994, BioEssays : news and reviews in molecular, cellular and developmental biology.

[142]  K. Low Escherichia coli K-12 F-prime factors, old and new , 1972, Bacteriological reviews.

[143]  P. Glaser,et al.  Shaping a bacterial genome by large chromosomal replacements, the evolutionary history of Streptococcus agalactiae , 2008, Proceedings of the National Academy of Sciences.

[144]  R. Schleif Regulation of the L-arabinose operon of Escherichia coli. , 2000, Trends in genetics : TIG.

[145]  T. K. Misra,et al.  Lagging strand replication of rolling-circle plasmids: specific recognition of the ssoA-type origins in different gram-positive bacteria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[146]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[147]  B. Wilkins,et al.  Distribution of the ardA family of antirestriction genes on conjugative plasmids. , 1995, Microbiology.

[148]  K. Arai,et al.  Unique primed start of phage phi X174 DNA replication and mobility of the primosome in a direction opposite chain synthesis. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[149]  S. Khan,et al.  Characterization of a single‐strand origin, ssoU, required for broad host range replication of rolling‐circle plasmids , 1999, Molecular microbiology.

[150]  L. Rothman-Denes,et al.  Sequence and DNA structural determinants of N4 virion RNA polymerase-promoter recognition. , 1998, Genes & development.

[151]  S. Adhya,et al.  Multipartite genetic control elements: communication by DNA loop. , 1989, Annual review of genetics.

[152]  Didier Mazel,et al.  Integrons: agents of bacterial evolution , 2006, Nature Reviews Microbiology.

[153]  R. Koepsel,et al.  Cleavage of single-stranded DNA by plasmid pT181-encoded RepC protein. , 1987, Nucleic acids research.

[154]  J. Gralla,et al.  Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli , 1987, Journal of bacteriology.

[155]  D. Lilley,et al.  Localized chemical hyperreactivity in supercoiled DNA: evidence for base unpairing in sequences that induce low-salt cruciform extrusion. , 1989, Biochemistry.

[156]  S. Khan Plasmid rolling-circle replication: highlights of two decades of research. , 2005, Plasmid.

[157]  James M. Berger,et al.  DNA replication initiation: mechanisms and regulation in bacteria , 2007, Nature Reviews Microbiology.

[158]  P. Siguier,et al.  Single-Stranded DNA Transposition Is Coupled to Host Replication , 2010, Cell.

[159]  D. Bastia,et al.  Direct physical interaction between DnaG primase and DnaB helicase of Escherichia coli is necessary for optimal synthesis of primer RNA. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[160]  C. Millar,et al.  Palindromes as substrates for multiple pathways of recombination in Escherichia coli. , 2000, Genetics.