Generalized Discriminant Analysis Using a Kernel Approach

We present a new method that we call generalized discriminant analysis (GDA) to deal with nonlinear discriminant analysis using kernel function operator. The underlying theory is close to the support vector machines (SVM) insofar as the GDA method provides a mapping of the input vectors into high-dimensional feature space. In the transformed space, linear properties make it easy to extend and generalize the classical linear discriminant analysis (LDA) to nonlinear discriminant analysis. The formulation is expressed as an eigenvalue problem resolution. Using a different kernel, one can cover a wide class of nonlinearities. For both simulated data and alternate kernels, we give classification results, as well as the shape of the decision function. The results are confirmed using real data to perform seed classification.

[1]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[2]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[3]  R. Tibshirani,et al.  Flexible Discriminant Analysis by Optimal Scoring , 1994 .

[4]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[5]  Vladimir Vapnik,et al.  The Support Vector Method , 1997, ICANN.

[6]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[7]  J. Bunch,et al.  Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .

[8]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[9]  Christopher J. C. Burges,et al.  Simplified Support Vector Decision Rules , 1996, ICML.

[10]  Christopher M. Bishop,et al.  Neural Network for Pattern Recognition , 1995 .

[11]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[12]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[13]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[14]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[15]  Rodrigo Fernandez Machines a vecteurs de support pour la reconnaissance des formes : proprietes et applications , 1999 .

[16]  Bernhard Schölkopf,et al.  Support vector learning , 1997 .

[17]  Mohamad T. Musavi,et al.  A minimum error neural network (MNN) , 1993, Neural Networks.

[18]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[19]  James Hardy Wilkinson,et al.  Linear algebra , 1971, Handbook for automatic computation.

[20]  S. Gunn Support Vector Machines for Classification and Regression , 1998 .

[21]  Alston S. Householder,et al.  Handbook for Automatic Computation , 1960, Comput. J..

[22]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[23]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[24]  Bernhard Schölkopf,et al.  Improving the accuracy and speed of support vector learning machines , 1997, NIPS 1997.

[25]  J. H. Wilkinson,et al.  Handbook for Automatic Computation: Linear Algebra (Grundlehren Der Mathematischen Wissenschaften, Vol 186) , 1986 .

[26]  J. H. Wilkinson,et al.  Handbook for Automatic Computation. Vol II, Linear Algebra , 1973 .

[27]  Gilbert Saporta,et al.  Probabilités, Analyse des données et statistique , 1991 .

[28]  J. Ortega,et al.  2. Linear Algebra , 2000 .

[29]  Fouad Badran,et al.  Probabilistic self-organizing map and radial basis function networks , 1998, Neurocomputing.

[30]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[31]  Bernhard Schölkopf,et al.  Improving the Accuracy and Speed of Support Vector Machines , 1996, NIPS.