Generalized Discriminant Analysis Using a Kernel Approach
暂无分享,去创建一个
[1] David Haussler,et al. Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.
[2] R. Fisher. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .
[3] R. Tibshirani,et al. Flexible Discriminant Analysis by Optimal Scoring , 1994 .
[4] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[5] Vladimir Vapnik,et al. The Support Vector Method , 1997, ICANN.
[6] Gunnar Rätsch,et al. An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.
[7] J. Bunch,et al. Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .
[8] D. Harville. Matrix Algebra From a Statistician's Perspective , 1998 .
[9] Christopher J. C. Burges,et al. Simplified Support Vector Decision Rules , 1996, ICML.
[10] Christopher M. Bishop,et al. Neural Network for Pattern Recognition , 1995 .
[11] Donald F. Specht,et al. Probabilistic neural networks , 1990, Neural Networks.
[12] Keinosuke Fukunaga,et al. Introduction to statistical pattern recognition (2nd ed.) , 1990 .
[13] B. Scholkopf,et al. Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).
[14] Bernhard E. Boser,et al. A training algorithm for optimal margin classifiers , 1992, COLT '92.
[15] Rodrigo Fernandez. Machines a vecteurs de support pour la reconnaissance des formes : proprietes et applications , 1999 .
[16] Bernhard Schölkopf,et al. Support vector learning , 1997 .
[17] Mohamad T. Musavi,et al. A minimum error neural network (MNN) , 1993, Neural Networks.
[18] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[19] James Hardy Wilkinson,et al. Linear algebra , 1971, Handbook for automatic computation.
[20] S. Gunn. Support Vector Machines for Classification and Regression , 1998 .
[21] Alston S. Householder,et al. Handbook for Automatic Computation , 1960, Comput. J..
[22] M. Aizerman,et al. Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .
[23] Alexander J. Smola,et al. Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.
[24] Bernhard Schölkopf,et al. Improving the accuracy and speed of support vector learning machines , 1997, NIPS 1997.
[25] J. H. Wilkinson,et al. Handbook for Automatic Computation: Linear Algebra (Grundlehren Der Mathematischen Wissenschaften, Vol 186) , 1986 .
[26] J. H. Wilkinson,et al. Handbook for Automatic Computation. Vol II, Linear Algebra , 1973 .
[27] Gilbert Saporta,et al. Probabilités, Analyse des données et statistique , 1991 .
[28] J. Ortega,et al. 2. Linear Algebra , 2000 .
[29] Fouad Badran,et al. Probabilistic self-organizing map and radial basis function networks , 1998, Neurocomputing.
[30] Alexander J. Smola,et al. Support Vector Regression Machines , 1996, NIPS.
[31] Bernhard Schölkopf,et al. Improving the Accuracy and Speed of Support Vector Machines , 1996, NIPS.