Superlinear PCG methods for symmetric Toeplitz systems

In this paper we deal with the solution, by means of preconditioned conjugate gradient (PCG) methods, of n x n symmetric Toeplitz systems A n (f)x = b with nonnegative generating function f. Here the function f is assumed to be continuous and strictly positive, or is assumed to have isolated zeros of even order. In the first case we use as preconditioner the natural and the optimal τ approximation of A n (f) proposed by Bini and Di Benedetto, and we prove that the related PCG method has a superlinear rate of convergence and a total arithmetic cost of O(n log n) ops. Under the second hypothesis we cannot guarantee that the natural τ matrix is positive definite, while for the optimal we show that, in the ill-conditioned case, this can be really a bad choice. Consequently, we define a new τ matrix for preconditioning the given system; then, by applying the Sherman-Morrison-Woodbury inversion formula to the preconditioned system, we introduce a small, constant number of subsidiary systems which can be solved again by means of the previous PCG method. Finally, we perform some numerical experiments that show the effectiveness of the devised technique and the adherence with the theoretical analysis.

[1]  Raymond H. Chan,et al.  Jackson's theorem and circulant preconditioned Toeplitz systems , 1992 .

[2]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[3]  G. Strang,et al.  Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .

[4]  Eugene E. Tyrtyshnikov,et al.  Circulant preconditioners with unbounded inverses , 1995 .

[5]  Paola Favati,et al.  On a Matrix Algebra Related to the Discrete Hartley Transform , 1993, SIAM J. Matrix Anal. Appl..

[6]  Dario Bini,et al.  SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .

[7]  Raymond H. Chan,et al.  Fast Band-Toeplitz Preconditioners for Hermitian Toeplitz Systems , 1994, SIAM J. Sci. Comput..

[8]  Raymond H. Chan,et al.  Circulant preconditioners for Toeplitz matrices with piecewise continuous generating functions , 1992 .

[9]  Stefano Serra,et al.  Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems , 1994 .

[10]  E. Cheney Introduction to approximation theory , 1966 .

[11]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .

[12]  D. Jackson,et al.  The theory of approximation , 1982 .

[13]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[14]  Stefano Serra,et al.  Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems , 1997 .

[15]  R. Chan Toeplitz Preconditioners for Toeplitz Systems with Nonnegative Generating Functions , 1991 .

[16]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[17]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[18]  S. Capizzano,et al.  Preconditioning Strategies for Hermitian Toeplitz Systems with Nondefinite Generating Functions , 1996, SIAM J. Matrix Anal. Appl..

[19]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[20]  Xiao-Qing Jin,et al.  Hartley preconditioners for Toeplitz systems generated by positive continuous functions , 1994 .

[21]  O. Axelsson,et al.  On the eigenvalue distribution of a class of preconditioning methods , 1986 .

[22]  Giuseppe Fiorentino,et al.  C. G. preconditioning for Toeplitz matrices , 1993 .

[23]  Fabio Di Benedetto,et al.  Analysis of Preconditioning Techniques for Ill-Conditioned Toeplitz Matrices , 1995, SIAM J. Sci. Comput..

[24]  Alan V. Oppenheim,et al.  Applications of digital signal processing , 1978 .

[25]  Raymond H. Chan,et al.  Toeplitz-Circulant Preconditioners for Toeplitz Systems and their Applications to Queueing Networks with Batch Arrivals , 1996, SIAM J. Sci. Comput..

[26]  Stefano Serra,et al.  On the extreme spectral properties of Toeplitz matrices generated byL1 functions with several minima/maxima , 1996 .

[27]  Dario Bini,et al.  A new preconditioner for the parallel solution of positive definite Toeplitz systems , 1990, SPAA '90.

[28]  Stefano Serra,et al.  On the extreme eigenvalues of hermitian (block) toeplitz matrices , 1998 .

[29]  W. Rudin Principles of mathematical analysis , 1964 .

[30]  U. Grenander,et al.  Statistical analysis of stationary time series , 1958 .

[31]  F. Hoog A new algorithm for solving Toeplitz systems of equations , 1987 .

[32]  Gene H. Golub,et al.  Matrix computations , 1983 .

[33]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..