Broadband antireflective coatings in the optical communication band deposited by ion-assisted reactive magnetron sputtering

[1]  Manqing Tan,et al.  Widely tunable refractive index silicon nitride films deposited by ion-assisted pulsed DC reactive magnetron sputtering , 2023, Optical Materials.

[2]  A. Lavrinenko,et al.  Optical, structural and composition properties of silicon nitride films deposited by reactive radio-frequency sputtering, low pressure and plasma-enhanced chemical vapor deposition , 2022, Thin Solid Films.

[3]  L. Coldren,et al.  A Review of Photonic Systems-on-Chip Enabled by Widely Tunable Lasers , 2022, IEEE Journal of Quantum Electronics.

[4]  P. Petropoulos,et al.  A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits , 2022, Sensors.

[5]  N. Deng,et al.  Challenges and Enabling Technologies for Multi-Band WDM Optical Networks , 2022, Journal of Lightwave Technology.

[6]  M. Iodice,et al.  Tuning silicon nitride refractive index through radio-frequency sputtering power , 2021, Thin Solid Films.

[7]  C. Balázsi,et al.  Silicon Nitride and Hydrogenated Silicon Nitride Thin Films: A Review of Fabrication Methods and Applications , 2021, Materials.

[8]  H. Zimmermann,et al.  Photon detection probability enhancement using an anti-reflection coating in CMOS-based SPADs. , 2021, Applied optics.

[9]  Jiang Li,et al.  Silicon/2D-material photodetectors: from near-infrared to mid-infrared , 2021, Light, science & applications.

[10]  A. Miotello,et al.  Fabricating multilayer antireflective coating for near complete transmittance in broadband visible light spectrum , 2020 .

[11]  A. Kaloyeros,et al.  Review—Silicon Nitride and Silicon Nitride-Rich Thin Film Technologies: State-of-the-Art Processing Technologies, Properties, and Applications , 2020 .

[12]  Narottam Das,et al.  Anti-Reflective Coating Materials: A Holistic Review from PV Perspective , 2020, Energies.

[13]  Periklis Petropoulos,et al.  Silicon Nitride Photonics for the Near-Infrared , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Brajesh Kumar Kaushik,et al.  Review of Recent Progress on Silicon Nitride-Based Photonic Integrated Circuits , 2020, IEEE Access.

[15]  V. Kheraj,et al.  Suppression of Optical Feedback in Laser Diodes Using Multilayered Broad-band Ultra-low Reflective Facets-coating , 2020 .

[16]  Lukas Czornomaz,et al.  Ultra-Low-Power Tuning in Hybrid Barium Titanate–Silicon Nitride Electro-optic Devices on Silicon , 2019, ACS Photonics.

[17]  J. L. Pura,et al.  Thermomechanical issues of high power laser diode catastrophic optical damage , 2019, Journal of Physics D: Applied Physics.

[18]  Jianda Shao,et al.  Effects of ion beam etching of fused silica substrates on the laser-induced damage properties of antireflection coatings at 355 nm , 2019, Optical Materials.

[19]  Peng Hu,et al.  Improving detection efficiency of superconducting nanowire single-photon detector using multilayer antireflection coating , 2018, AIP Advances.

[20]  L. Martinu,et al.  Review Article: Stress in thin films and coatings: Current status, challenges, and prospects , 2018 .

[21]  I. Martin,et al.  Effect of Stress and Temperature on the Optical Properties of Silicon Nitride Membranes at 1,550 nm , 2018, Front. Mater..

[22]  Lin-Bao Luo,et al.  Near‐Infrared‐Light Photodetectors Based on One‐Dimensional Inorganic Semiconductor Nanostructures , 2017 .

[23]  T. Taniguchi,et al.  Transparent polycrystalline cubic silicon nitride , 2017, Scientific Reports.

[24]  M. Elbahri,et al.  Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review , 2016, Materials.

[25]  Feng Gao,et al.  Enhanced performance of tunable external-cavity 1.5 mu m InAs/InP quantum dot lasers using facet coating , 2015 .

[26]  Laszlo Veisz,et al.  Stress compensation with antireflection coatings for ultrafast laser applications: from theory to practice. , 2014, Optics express.

[27]  J. W. Lambrechts,et al.  Layer structure and material properties of an epitaxially grown InGaAs PIN photo-detector on an InP substrate , 2014, Other Conferences.

[28]  F. van Dijk,et al.  Wide Optical Bandwidth and High Output Power Superluminescent Diode Covering C and L Band , 2014, IEEE Photonics Technology Letters.

[29]  K. Tkacz–Śmiech,et al.  Silicon nitride layers of various n-content: Technology, properties and structure , 2011 .

[30]  Seeram Ramakrishna,et al.  Anti-reflective coatings: A critical, in-depth review , 2011 .

[31]  Lihua Yu,et al.  Surface morphology and growth mechanisms for sputtered amorphous silicon nitride thin films , 2008 .

[32]  Mark Bush,et al.  Effects of deposition temperature on the mechanical and physical properties of silicon nitride thin films , 2005 .

[33]  Sheng-Hui Chen,et al.  Influence of deposition parameters in the fabrication of a large-area narrow band-pass filter of bandwidth on subnanometer scale , 2004 .

[34]  T. Fujimoto,et al.  Preparation and characterization of smooth and dense silicon nitride thin films , 2001 .

[35]  A. Aberle Overview on SiN surface passivation of crystalline silicon solar cells , 2001 .

[36]  Mitsuo Fukuda,et al.  Historical overview and future of optoelectronics reliability for optical fiber communication systems , 2000 .

[37]  T. C. Choy Effective medium theory : principles and applications , 1999 .

[38]  C. C. Lee,et al.  Interference coatings based on synthesized silicon nitride. , 1999, Applied optics.

[39]  Basavaraj V. Hiremath,et al.  Robust and reliable thin films for optical telecommunications systems: an overview , 1993, Optical Systems Design.

[40]  G. Eisenstein,et al.  High quality antireflection coatings on laser facets by sputtered silicon nitride. , 1984, Applied optics.