Modeling autocorrelation functions of self-similar teletraffic in communication networks based on optimal approximation in Hilbert space

Abstract The approach to model autocorrelation functions of real-traffic traces in communication networks is presented based on optimal approximation in Hilbert space. The verifications are carried out with the real-traffic traces.

[1]  C.-Y. Wen,et al.  Self-similar texture characterization using Wigner-Ville distribution , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[2]  Jean Pierre Aubin,et al.  Applied abstract analysis , 1977 .

[3]  P. Mars,et al.  Self-similar traffic generation and parameter estimation using wavelet transform , 1997, GLOBECOM 97. IEEE Global Telecommunications Conference. Conference Record.

[4]  A. Erramilli,et al.  Self-similar traffic parameter estimation: a semi-parametric periodogram-based algorithm , 1995, Proceedings of GLOBECOM '95.

[5]  S. McLaughlin,et al.  Testing the Gaussian assumption for self-similar teletraffic models , 1997, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics.

[6]  H. Michiel,et al.  Teletraffic engineering in a broad-band era , 1997, Proc. IEEE.

[7]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[8]  Stefano Giordano,et al.  A wavelet-based approach to the estimation of the Hurst parameter for self-similar data , 1997, Proceedings of 13th International Conference on Digital Signal Processing.

[9]  San-qi Li,et al.  Queue response to input correlation functions: continuous spectral analysis , 1993, TNET.

[10]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[11]  Nicolas D. Georganas,et al.  On self-similar traffic in ATM queues: definitions, overflow probability bound, and cell delay distribution , 1997, TNET.

[12]  Sally Floyd,et al.  Wide area traffic: the failure of Poisson modeling , 1995, TNET.

[13]  N.D. Georganas,et al.  Self-Similar Processes in Communications Networks , 1998, IEEE Trans. Inf. Theory.

[14]  R.L. Kashyap,et al.  Signal modeling and parameter estimation for 1/f processes using scale stationary models , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[15]  Haruo Akimaru,et al.  Teletraffic: Theory and Applications , 1993 .

[16]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[17]  Oliver W. W. Yang,et al.  Estimation of Hurst parameter by variance-time plots , 1997, 1997 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, PACRIM. 10 Years Networking the Pacific Rim, 1987-1997.

[18]  Rajesh Sharma,et al.  Asymptotic analysis , 1986 .