Biomineralization of Iron Sulfides in Magnetotactic Bacteria from Sulfidic Environments

Magnetotactic bacteria contain intracellular iron mineral inclusions termed magnetosomes (Balkwill et al., 1980) which impart a permanent magnetic dipole moment to the cell resulting in its alignment and navigation in magnetic fields (Blakemore, 1975, 1982; Frankel, 1984). Various methods have been used to determine the mineral phase of the magnetosomes including Mossbauer spectroscopy, x-ray powder diffraction, selected area/micro-electron diffraction, and energy dispersive x-ray analysis (Frankel et al., 1979; Towe and Moench, 1981; Sparks et al., 1990). The particles in almost all magnetotactic bacteria have been shown to consist of the mineral magnetite (Fe3O4) (Frankel et al., 1979; Towe and Moench, 1981; Matsuda et al., 1983; Mann et al., 1987; Bazylinski et al., 1988), sometimes admixed with hydrous ferric oxide, a precursor to Fe3O4 precipitation (Frankel et al., 1983; Bazylinski et al., 1988).

[1]  C. I. Dell An Occurrence of Greigite in Lake Superior Sediments , 1972 .

[2]  R. Blakemore,et al.  Microaerobic Conditions Are Required for Magnetite Formation Within Aquaspirillum magnetotacticum , 1985 .

[3]  T. Matsuda,et al.  Morphology and structure of biogenic magnetite particles , 1983, Nature.

[4]  B. L. Howes,et al.  Dimethyl sulphide in a stratified coastal salt pond , 1984, Nature.

[5]  N. Sparks,et al.  Saltmarsh ponds—a preferred habitat for magnetotactic bacteria? , 1989 .

[6]  K. Creer Geomagnetic variations for the interval 7000–25,000 yr B.P. as recorded in a core of sediment from station 1474 of the Black Sea cruise of “Atlantis II” , 1974 .

[7]  G. Wächtershäuser,et al.  Pyrite Formation, the First Energy Source for Life: a Hypothesis , 1988 .

[8]  L. A. Chambers,et al.  Metal accumulation by bacteria with particular reference to dissimilatory sulphate-reducing bacteria. , 1976, Zeitschrift fur allgemeine Mikrobiologie.

[9]  Stephen Mann,et al.  Ultrastructure and characterization of anisotropic magnetic inclusions in magnetotactic bacteria , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  R. Berner thermodynamic stability of sedimentary iron sulfides , 1967 .

[11]  R. Blakemore,et al.  Denitrification and Assimilatory Nitrate Reduction in Aquaspirillum magnetotacticum , 1983, Applied and environmental microbiology.

[12]  Kazuo Kobayashi,et al.  Iron sulfides in the sediment cores from the Sea of Japan and their geophysical implications , 1972 .

[13]  G. Wächtershäuser,et al.  Before enzymes and templates: theory of surface metabolism. , 1988, Microbiological reviews.

[14]  T. Moench,et al.  Electron-optical characterization of bacterial magnetite , 1981 .

[15]  Holger W. Jannasch,et al.  Anaerobic magnetite production by a marine, magnetotactic bacterium , 1988, Nature.

[16]  Joseph L. Kirschvink,et al.  Magnetite biomineralization and magnetoreception in organisms , 1985 .

[17]  R. Blakemore,et al.  Fe3O4 precipitation in magnetotactic bacteria , 1983 .

[18]  R. Blakemore,et al.  Ultrastructure of a magnetotactic spirillum , 1980, Journal of bacteriology.

[19]  L. G. Love,et al.  Bedded pyrite and micro-organisms from the Mount Isa shale , 1961 .

[20]  R. J. Williams Iron and the origin of life , 1990, Nature.

[21]  R. Frankel,et al.  Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium , 1990 .

[22]  R. Blakemore Magnetotactic bacteria , 1975, Science.

[23]  B. Skinner,et al.  Greigite, the thio-spinel of iron; a new mineral , 1964 .

[24]  R. Berner Sedimentary pyrite formation , 1970 .

[25]  L. A. Chambers,et al.  Metal accumulation by bacteria with particular reference to dissimilatory sulphate-reducing bacteria , 1976 .

[26]  J. Schieber Pyrite mineralization in microbial mats from the mid-Proterozoic Newland Formation, Belt Supergroup, Montana, U.S.A. , 1989 .

[27]  R S Wolfe,et al.  Magnetite in Freshwater Magnetotactic Bacteria , 1979, Science.

[28]  B. Issatschenko Zur Frage der biogenischen Bildung des Pyrits , 1929 .

[29]  Derek R. Lovley,et al.  Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism , 1987, Nature.

[30]  A. Freke,et al.  The formation of magnetic iron sulphide by bacterial reduction of iron solutions , 1961 .

[31]  D. Rickard The microbiological formation of iron sulphides , 1969 .

[32]  F. Millero,et al.  The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters , 1987 .

[33]  D. Rickard The chemistry of iron sulphide formation at low temperatures , 1969 .

[34]  D. Canfield,et al.  Dissolution and pyritization of magnetite in anoxie marine sediments , 1987 .

[35]  H. L. Barros,et al.  Magnetotactic Microorganisms Found in Muds from Rio de Janeiro , 1985 .

[36]  J. Murray,et al.  Biogenic pyrite in recent sediments of Christchurch harbour, England , 1963 .

[37]  R. Howarth Pyrite: Its Rapid Formation in a Salt Marsh and Its Importance in Ecosystem Metabolism , 1979, Science.

[38]  R. Frankel,et al.  Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium , 1990, Nature.

[39]  I. Lambert,et al.  Biogenic Sulfide Ores; A Feasibility Study , 1972 .

[40]  Marcos Farina,et al.  Magnetic iron-sulphur crystals from a magnetotactic microorganism , 1990, Nature.

[41]  R. Blakemore,et al.  Structure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[42]  B. L. Howes,et al.  Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond , 1987 .

[43]  R. Frankel,et al.  Magnetic guidance of organisms. , 1984, Annual review of biophysics and bioengineering.