Classification et sélection de caractéristiques de textures. Utilisation d'algorithmes automatiques supervisés de sélection d'attributs pour la classification d'images

Image's experts use different kind of attributes to represent texture information. We propose a methodology to automatically choose the best texture models using a feature selection algorithm. Therefore we compare the efficiency of several recent algorithms. The algorithms evaluation is performed using classification error rates and heuristics. We demonstrate the interest of such a methodology on Brodatz and satellite images.

[1]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[2]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[3]  Filippo Menczer,et al.  Evolutionary model selection in unsupervised learning , 2002, Intell. Data Anal..

[4]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[5]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[6]  Juha Reunanen,et al.  Overfitting in Making Comparisons Between Variable Selection Methods , 2003, J. Mach. Learn. Res..

[7]  Alain Rakotomamonjy,et al.  Variable Selection Using SVM-based Criteria , 2003, J. Mach. Learn. Res..

[8]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[9]  Bernhard Schölkopf,et al.  Support Vector Method for Novelty Detection , 1999, NIPS.

[10]  Hava T. Siegelmann,et al.  Support Vector Clustering , 2002, J. Mach. Learn. Res..

[11]  José Carlos Príncipe,et al.  A new clustering evaluation function using Renyi's information potential , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[12]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[13]  André Elisseeff Etude de la complexité et contrôle de la capacité des systèmes d'apprentissage : SVM multi-classe, réseaux de régularisation et réseaux de neurones multicouches , 2000 .

[14]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[15]  Bernhard Schölkopf,et al.  Use of the Zero-Norm with Linear Models and Kernel Methods , 2003, J. Mach. Learn. Res..

[16]  Nicu Sebe,et al.  Wavelet based texture classification , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[17]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[18]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[19]  H. Ritter,et al.  Perceptual Grouping in a Neural Model: Reproducing Human Texture Perception , 1998 .

[20]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[21]  C. A. Murthy,et al.  Unsupervised Feature Selection Using Feature Similarity , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[23]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[25]  S. Mallat A wavelet tour of signal processing , 1998 .

[26]  Marko Robnik-Sikonja,et al.  Theoretical and Empirical Analysis of ReliefF and RReliefF , 2003, Machine Learning.