Matrix Modeling of Hierarchical Fuzzy Systems

A matrix procedure to obtain a hierarchical decomposition of a multiple-input-single-output (MISO) fuzzy system is proposed. It is based on the fast inference using transition matrices (FITM) framework recently described. The resulting hierarchical system is totally equivalent to the original one in terms of input-output relation. A study of the rule-reduction capability of this system is carried out. Additionally, this paper describes a rule-base definition procedure of each of the systems resulting within the hierarchy. This procedure is based on closed-form analytical expressions and it does not need any manual interaction.

[1]  Vicenç Torra,et al.  A review of the construction of hierarchical fuzzy systems , 2002, Int. J. Intell. Syst..

[2]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[3]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[4]  Jun Zhou,et al.  Adaptive hierarchical fuzzy controller , 1993, IEEE Trans. Syst. Man Cybern..

[5]  Clodeinir Ronei Peres,et al.  Fuzzy model and hierarchical fuzzy control integration: an approach for milling process optimization , 1999 .

[6]  Li-Xin Wang,et al.  Universal approximation by hierarchical fuzzy systems , 1998, Fuzzy Sets Syst..

[7]  Noboru Takagi,et al.  Hierarchical fuzzy modeling and jointly expandable functions , 2002, Int. J. Intell. Syst..

[8]  Shohachiro Nakanishi,et al.  Functional Completeness of Hierarchical Fuzzy Modeling , 1998, Inf. Sci..

[9]  Jun Zhou,et al.  Hierarchical fuzzy control , 1991 .

[10]  Ronald R. Yager,et al.  On the construction of hierarchical fuzzy systems models , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[11]  Z. Binder,et al.  Hierarchical Fuzzy Controllers , 1995 .

[12]  Xiao-Jun Zeng,et al.  Approximation Capabilities of Hierarchical Fuzzy Systems , 2005, IEEE Transactions on Fuzzy Systems.

[13]  Peter L. Balise,et al.  Vector and Tensor Analysis with Applications , 1969 .

[14]  Santiago Aja-Fernández,et al.  Hierarchical fuzzy systems with FITM , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[15]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[16]  Carlos Alberola-López,et al.  Matrix Inference in Fuzzy Decision Trees , 2005, EUSFLAT Conf..

[17]  R. Holve Rule generation for hierarchical fuzzy systems , 1997, 1997 Annual Meeting of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.97TH8297).

[18]  Li-Xin Wang,et al.  A note on universal approximation by hierarchical fuzzy systems , 2000, Inf. Sci..

[19]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[20]  Naiyao Zhang,et al.  Conditions for Equivalence of Hierarchical Fuzzy Systems and Zero-Order TS Fuzzy Systems , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[21]  Jin S. Lee,et al.  Universal approximation by hierarchical fuzzy system with constraints on the fuzzy rule , 2002, Fuzzy Sets Syst..

[22]  Moo G. Joo,et al.  A method of converting conventional fuzzy logic system to 2 layered hierarchical fuzzy system , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[23]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[24]  Ming-Ling Lee,et al.  Modeling of hierarchical fuzzy systems , 2003, Fuzzy Sets Syst..

[25]  Carlos Alberola-López,et al.  Fuzzy feedback system analysis using transition matrices , 2006, Fuzzy Sets Syst..

[26]  James J. Buckley,et al.  Fuzzy hierarchical analysis revisited , 2001, Eur. J. Oper. Res..

[27]  Ronald R. Yager,et al.  On a hierarchical structure for fuzzy modeling and control , 1993, IEEE Trans. Syst. Man Cybern..

[28]  Carlos Alberola-López,et al.  Fast inference in SAM fuzzy systems using transition matrices , 2004, IEEE Transactions on Fuzzy Systems.

[29]  Carlos Alberola-López,et al.  Fast inference using transition matrices: an extension to nonlinear operators , 2005, IEEE Transactions on Fuzzy Systems.

[30]  Bart Kosko,et al.  Fuzzy Engineering , 1996 .