Manifold-Following Approximate Solution of Completely Hypersensitive Optimal Control Problems

[1]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[2]  V. W. Noonburg,et al.  Ordinary Differential Equations , 2014 .

[3]  Hinke M Osinga,et al.  Geometric analysis of transient bursts. , 2013, Chaos.

[4]  J. Guckenheimer,et al.  Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..

[5]  G. Haller A variational theory of hyperbolic Lagrangian Coherent Structures , 2010 .

[6]  U. Topcu,et al.  Characterizing two-timescale nonlinear dynamics using finite-time Lyapunov exponents and subspaces , 2008, Commun. Nonlinear Sci. Numer. Simul..

[7]  C. Danforth,et al.  Using Singular Value Decomposition to Parameterize State-Dependent Model Errors , 2008 .

[8]  Jerrold E. Marsden,et al.  Lagrangian coherent structures in n-dimensional systems , 2007 .

[9]  R. Samelson,et al.  An efficient method for recovering Lyapunov vectors from singular vectors , 2007 .

[10]  U. Topcu,et al.  Using Lyapunov Vectors and Dichotomy to Solve Hyper-Sensitive Optimal Control Problems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[11]  Christopher M Danforth,et al.  Making forecasts for chaotic physical processes. , 2006, Physical review letters.

[12]  Mauro Valorani,et al.  Natural tangent dynamics with recurrent biorthonormalizations: A geometric computational approach to dynamical systems exhibiting slow manifolds and periodic/chaotic limit sets , 2006 .

[13]  J. Marsden,et al.  Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows , 2005 .

[14]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[15]  M. Giona,et al.  Biorthogonalization, geometric invariant properties and rate-based estimate of Lyapunov spectra , 2005 .

[16]  S. Bharadwaj,et al.  Timescale Analysis for Nonlinear Dynamical Systems , 2003 .

[17]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[18]  Luca Dieci,et al.  Lyapunov Spectral Intervals: Theory and Computation , 2002, SIAM J. Numer. Anal..

[19]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[20]  Anil V. Rao,et al.  Dichotomic basis approach to solving hyper-sensitive optimal control problems , 1999, Autom..

[21]  Anil V. Rao,et al.  Eigenvector approximate dichotomic basis method for solving hyper‐sensitive optimal control problems , 1999 .

[22]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[23]  T. Palmer,et al.  Finite-Time Instabilities of Lower-Stratospheric Flow. , 1996 .

[24]  J. A. Walker,et al.  The general problem of the stability of motion , 1994 .

[25]  Robert D. Moser,et al.  Short-time Lyapunov exponent analysis and the transition to chaos in Taylor–Couette flow , 1991, Journal of Fluid Mechanics.

[26]  Eugene Isaacson,et al.  Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Uri M. Ascher, Robert M. M. Mattheij, and Robert D. Russell) , 1989, SIAM Rev..

[27]  Steven A. Orszag,et al.  Stability and Lyapunov stability of dynamical systems: A differential approach and a numerical method , 1987 .

[28]  Brian D. O. Anderson,et al.  Optimal control problems over large time intervals , 1987, Autom..

[29]  George R. Sell,et al.  The spectrum of an invariant submanifold , 1980 .

[30]  J. Chow A class of singularly perturbed, nonlinear, fixed-endpoint control problems , 1979 .

[31]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[33]  P. Kokotovic,et al.  A dichotomy in linear control theory , 1972 .

[34]  Anil V. Rao,et al.  GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming , 2014, ACM Trans. Math. Softw..

[35]  Kenneth D. Mease,et al.  Solving Partially Hyper-Sensitive Optimal Control Problems Using Manifold Structure , 2013, NOLCOS.

[36]  L. Barreira,et al.  Lyapunov Exponents and Smooth Ergodic Theory , 2002 .

[37]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[38]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[39]  B. Heimann,et al.  Fleming, W. H./Rishel, R. W., Deterministic and Stochastic Optimal Control. New York‐Heidelberg‐Berlin. Springer‐Verlag. 1975. XIII, 222 S, DM 60,60 , 1979 .

[40]  H. Weinert,et al.  Bryson, A. E./ Ho, Y.-C., Applied Optimal Control, Optimization, Estimation, and Control. New York-London-Sydney-Toronto. John Wiley & Sons. 1975. 481 S., £10.90 , 1979 .

[41]  Henry J. Kelley,et al.  Aircraft Maneuver Optimization by Reduced-Order Approximation , 1973 .

[42]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[43]  Henry J. Kelley,et al.  Aircraft Maneuver Optimization by Reduced-Order Approximation* *The research was performed in part under Contract NAS 12-656 with NASA Electronics Research Center and Contract F 44620-71-C-0123 with USAF Headquarters, Office of the Assistant Chief of Staff for Studies and Analysis. , 1973 .