Analysis of general shaped thin plates by the moving least-squares differential quadrature method

[1]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[2]  R. Bellman,et al.  DIFFERENTIAL QUADRATURE AND LONG-TERM INTEGRATION , 1971 .

[3]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[4]  Faruk Civan,et al.  Differential quadrature for multi-dimensional problems , 1984 .

[5]  O. C. Zienkiewicz,et al.  A robust triangular plate bending element of the Reissner–Mindlin type , 1988 .

[6]  P.A.A. Laura,et al.  Analysis of Vibrating Timoshenko Beams Using the Method of Differential Quadrature , 1993 .

[7]  P.A.A. Laura,et al.  Analysis of vibrating rectangular plates with non-uniform boundary conditions by using the differential quadrature method , 1994 .

[8]  Alfred G. Striz,et al.  Static analysis of structures by the quadrature element method(QEM) , 1994 .

[9]  Faruk Civan,et al.  Solving multivariable mathematical models by the quadrature and cubature methods , 1994 .

[10]  D. Sengupta,et al.  Performance study of a simple finite element in the analysis of skew rhombic plates , 1995 .

[11]  Mark A Fleming,et al.  Smoothing and accelerated computations in the element free Galerkin method , 1996 .

[12]  C. Bert,et al.  Differential Quadrature Method in Computational Mechanics: A Review , 1996 .

[13]  K. Liew,et al.  Differential cubature method: A solution technique for Kirchhoff plates of arbitrary shape , 1997 .

[14]  Bending Analysis of Simply Supported Shear Deformable Skew Plates , 1997 .

[15]  Chang Shu,et al.  Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates , 1997 .

[16]  C. Bert,et al.  A NEW APPROACH TO THE DIFFERENTIAL QUADRATURE METHOD FOR FOURTH‐ORDER EQUATIONS , 1997 .

[17]  K. M. Liew,et al.  Static Analysis of Reissner-Mindlin Plates by Differential Quadrature Element Method , 1998 .

[18]  Chang-New Chen,et al.  The warping torsion bar model of the differential quadrature element method , 1998 .

[19]  K. M. Liew,et al.  Differential quadrature element method: a new approach for free vibration analysis of polar Mindlin plates having discontinuities , 1999 .

[20]  J. N. Reddy,et al.  Theory and analysis of elastic plates , 1999 .

[21]  Chang-New Chen,et al.  The development of irregular elements for differential quadrature element method steady-state heat conduction analysis , 1999 .

[22]  Chang-New Chen,et al.  A generalized differential quadrature element method , 2000 .

[23]  J. N. Reddy,et al.  Energy principles and variational methods in applied mechanics , 2002 .

[24]  J. N. Reddy,et al.  A Hybrid Moving Least Squares and Differential Quadrature (MLSDQ) Meshfree Method , 2002, Int. J. Comput. Eng. Sci..

[25]  K. M. Liew,et al.  Moving least squares differential quadrature method and its application to the analysis of shear deformable plates , 2003 .