Mechanisms of extrahepatic vasodilation in portal hypertension

In liver cirrhosis, abnormal persistent extrahepatic vasodilation leads to hyperdynamic circulatory dysfunction which essentially contributes to portal hypertension. Since portal hypertension is a major factor in the development of complications in cirrhosis, the mechanisms underlying this vasodilation are of paramount interest. Extensive studies performed in cirrhotic patients and animals revealed that this vasodilation is associated on the one hand with enhanced formation of vasodilators, and on the other hand with vascular hyporesponsiveness to vasoconstrictors. The latter phenomenon has been termed “vascular hypocontractility”. It is caused by a combination of different mechanisms and factors described in this review.

[1]  F. Lammert,et al.  Hemodynamic effects of urotensin II and its specific receptor antagonist palosuran in cirrhotic rats , 2007, Hepatology.

[2]  Vicente Arroyo,et al.  Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis , 2007, Postgraduate Medical Journal.

[3]  M. Tsai Splanchnic and systemic vasodilatation: the patient. , 2007, Journal of clinical gastroenterology.

[4]  Y. Iwakiri The Molecules: Mechanisms of Arterial Vasodilatation Observed in the Splanchnic and Systemic Circulation in Portal Hypertension , 2007, Journal of clinical gastroenterology.

[5]  J. Henriksen,et al.  The Systemic Circulation in Cirrhosis , 2007 .

[6]  T. Sauerbruch,et al.  Vascular dysfunction in human and rat cirrhosis: Role of receptor‐desensitizing and calcium‐sensitizing proteins , 2007, Hepatology.

[7]  J. Schölmerich,et al.  Role of NPY for vasoregulation in the splanchnic circulation during portal hypertension , 2007, Peptides.

[8]  J. Bełtowski,et al.  Hydrogen sulfide (H2S) - the third gas of interest for pharmacologists. , 2007, Pharmacological reports : PR.

[9]  L. Moezi,et al.  Anandamide mediates hyperdynamic circulation in cirrhotic rats via CB1 and VR1 receptors , 2006, British journal of pharmacology.

[10]  T. Sauerbruch,et al.  Intrahepatic upregulation of RhoA and Rho-kinase signalling contributes to increased hepatic vascular resistance in rats with secondary biliary cirrhosis , 2006, Gut.

[11]  A. Geerts,et al.  Increased angiogenesis and permeability in the mesenteric microvasculature of rats with cirrhosis and portal hypertension: an in vivo study , 2006, Liver international : official journal of the International Association for the Study of the Liver.

[12]  R. Moreau,et al.  Upregulation of TNF-alpha production signaling pathways in monocytes from patients with advanced cirrhosis: possible role of Akt and IRAK-M. , 2006, Journal of hepatology.

[13]  R. Schwabe,et al.  Toll-like receptor signaling in the liver. , 2006, Gastroenterology.

[14]  R. Groszmann,et al.  Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. , 2006, American journal of physiology. Gastrointestinal and liver physiology.

[15]  H. Fukui,et al.  Local regulator adrenomedullin contributes to the circulatory disturbance in cirrhotic rats. , 2006, World journal of gastroenterology.

[16]  J. Schölmerich,et al.  Enhanced Y1-receptor-mediated vasoconstrictive action of neuropeptide Y (NPY) in superior mesenteric arteries in portal hypertension. , 2006, Journal of hepatology.

[17]  K. Jakobs,et al.  Defective RhoA/Rho-kinase signaling contributes to vascular hypocontractility and vasodilation in cirrhotic rats. , 2006, Gastroenterology.

[18]  M. Robbin,et al.  Gastric pneumatosis following nasogastric tube placement: a case report with literature review , 2006, Emergency Radiology.

[19]  T. Roskams,et al.  A role for asymmetric dimethylarginine in the pathophysiology of portal hypertension in rats with biliary cirrhosis , 2005, Hepatology.

[20]  M. Ebrahimkhani,et al.  Hydrogen sulphide and the hyperdynamic circulation in cirrhosis: a hypothesis , 2005, Gut.

[21]  P. Pontisso,et al.  Haeme oxygenase mediates hyporeactivity to phenylephrine in the mesenteric vessels of cirrhotic rats with ascites , 2005, Gut.

[22]  Y. Chung,et al.  Gastric pneumatosis after endoscopic argon plasma coagulation. , 2005, Annals of the Academy of Medicine, Singapore.

[23]  A. de Gottardi,et al.  Basic Studies , 2005 .

[24]  J. Schölmerich,et al.  Up-regulation of nNOS and associated increase in nitrergic vasodilation in superior mesenteric arteries in pre-hepatic portal hypertension. , 2005, Journal of hepatology.

[25]  Carmina Montoliu,et al.  Correlation of nitric oxide and atrial natriuretic peptide changes with altered cGMP homeostasis in liver cirrhosis , 2005, Liver international : official journal of the International Association for the Study of the Liver.

[26]  R. Schrier,et al.  Ascites and Renal Dysfunction in Liver Disease , 2005 .

[27]  R. Moreau,et al.  Norfloxacin reduces aortic NO synthases and proinflammatory cytokine up-regulation in cirrhotic rats: role of Akt signaling. , 2005, Gastroenterology.

[28]  M. Aller,et al.  Proinflammatory Liver and Antiinflammatory Intestinal Mediators Involved in Portal Hypertensive Rats , 2005, Mediators of inflammation.

[29]  G. Mauco,et al.  Gender differences in vascular reactivity of aortas from rats with and without portal hypertension , 2005, Journal of gastroenterology and hepatology.

[30]  T. Sauerbruch,et al.  Vascular, hemodynamic and renal effects of low‐dose losartan in rats with secondary biliary cirrhosis , 2005, Liver international : official journal of the International Association for the Study of the Liver.

[31]  Robert J. Lefkowitz,et al.  Transduction of Receptor Signals by ß-Arrestins , 2005, Science.

[32]  Shou-Dong Lee,et al.  Vascular contractile response and signal transduction in endothelium-denuded aorta from cirrhotic rats. , 2005, World journal of gastroenterology.

[33]  W. Jiménez,et al.  The role of nitric oxide in the pathogenesis of systemic and splanchnic vasodilation in cirrhotic rats before and after the onset of ascites , 2005, Liver international : official journal of the International Association for the Study of the Liver.

[34]  Xuesong Chen,et al.  Impaired agonist-dependent myosin phosphorylation and decreased RhoA in rat portal hypertensive mesenteric vasculature. , 2005, American journal of physiology. Gastrointestinal and liver physiology.

[35]  W. Jiménez,et al.  Increased anandamide induced relaxation in mesenteric arteries of cirrhotic rats: role of cannabinoid and vanilloid receptors , 2005, Gut.

[36]  A. Lemberg,et al.  Role of heme oxygenase/carbon monoxide pathway on the vascular response to noradrenaline in portal hypertensive rats , 2005, Clinical and experimental pharmacology & physiology.

[37]  A. Stefanov,et al.  Ca2+-sensitivity and cGMP-independent effects of NO in vascular smooth muscle. , 2005, Nitric oxide : biology and chemistry.

[38]  S. Doggrell,et al.  Evidence for, and importance of, cGMP-independent mechanisms with NO and NO donors on blood vessels and platelets. , 2005, Current vascular pharmacology.

[39]  C. Fernández-Rodríguez,et al.  Circulating endogenous cannabinoid anandamide and portal, systemic and renal hemodynamics in cirrhosis , 2004, Liver international : official journal of the International Association for the Study of the Liver.

[40]  P. Hellstrand,et al.  Nitric oxide relaxes rat tail artery smooth muscle by cyclic GMP-independent decrease in calcium sensitivity of myofilaments. , 2004, Cell calcium.

[41]  M. Serra,et al.  Plasma concentrations of nitric oxide and asymmetric dimethylarginine in human alcoholic cirrhosis. , 2004, Journal of hepatology.

[42]  S. Brain,et al.  Vascular actions of calcitonin gene-related peptide and adrenomedullin. , 2004, Physiological reviews.

[43]  W. Sessa eNOS at a glance , 2004, Journal of Cell Science.

[44]  D. Kendall,et al.  The complexities of the cardiovascular actions of cannabinoids , 2004, British journal of pharmacology.

[45]  R. Schrier,et al.  Increased vascular heme oxygenase‐1 expression contributes to arterial vasodilation in experimental cirrhosis in rats , 2004, Hepatology.

[46]  I. Colle,et al.  Vascular hyporesponsiveness in the mesenteric artery of anaesthetized rats with cirrhosis and portal hypertension: an in-vivo study , 2004, European journal of gastroenterology & hepatology.

[47]  N. Abraham,et al.  Role of the Heme Oxygenases in Abnormalities of the Mesenteric Circulation in Cirrhotic Rats , 2004, Journal of Pharmacology and Experimental Therapeutics.

[48]  N. Minamino,et al.  Adrenomedullin contributes to vascular hyporeactivity in cirrhotic rats with ascites via a release of nitric oxide , 2004, Scandinavian journal of gastroenterology.

[49]  Miguel Ángel Martínez,et al.  Adrenomedullin, a Vasodilator Peptide Implicated in Hemodynamic Alterations of Liver Cirrhosis Relationship to Nitric Oxide , 1999, Digestive Diseases and Sciences.

[50]  R. Groszmann,et al.  Bacterial translocation up‐regulates GTP‐cyclohydrolase I in mesenteric vasculature of cirrhotic rats , 2003, Hepatology.

[51]  R. Challiss,et al.  Non-visual GRKs: are we seeing the whole picture? , 2003, Trends in pharmacological sciences.

[52]  Jian-hua Ai,et al.  Heat shock protein 90 is responsible for hyperdynamic circulation in portal hypertensive rats. , 2003, World journal of gastroenterology.

[53]  F. Hofmann,et al.  Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice. , 2003, Circulation research.

[54]  F. Hofmann,et al.  Physiology and Pathophysiology of Vascular Signaling Controlled by Cyclic Guanosine 3′,5′-Cyclic Monophosphate–Dependent Protein Kinase , 2003 .

[55]  R. Groszmann,et al.  Mesenteric vasoconstriction triggers nitric oxide overproduction in the superior mesenteric artery of portal hypertensive rats. , 2003, Gastroenterology.

[56]  R. Lefkowitz,et al.  Multifaceted roles of β-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling , 2003 .

[57]  Ç. Karaca,et al.  Adrenomedullin in cirrhotic and non-cirrhotic portal hypertension. , 2003, World journal of gastroenterology.

[58]  A. Somlyo,et al.  Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. , 2003, Physiological reviews.

[59]  G. Jennings,et al.  The Effect of Selective Intestinal Decontamination on the Hyperdynamic Circulatory State in Cirrhosis , 2003, Annals of Internal Medicine.

[60]  P. Cahill,et al.  The role of nitric oxide synthase isoforms in extrahepatic portal hypertension: studies in gene-knockout mice. , 2003, Gastroenterology.

[61]  H. Qian,et al.  Arresting angiotensin type 1 receptors , 2003, Trends in Endocrinology & Metabolism.

[62]  H. Nischalke,et al.  Portal hypertension is associated with increased mRNA levels of vasopressor G‐protein‐coupled receptors in human hepatic arteries , 2003, European journal of clinical investigation.

[63]  D. Webb,et al.  Enhanced vasodilatation to endothelin antagonism in patients with compensated cirrhosis and the role of nitric oxide , 2003, Gut.

[64]  R. Busse,et al.  Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[65]  J. Reichen,et al.  Endothelial, but not the inducible, nitric oxide synthase is detectable in normal and portal hypertensive rats. , 2002, Liver.

[66]  R. Groszmann,et al.  Mice with targeted deletion of eNOS develop hyperdynamic circulation associated with portal hypertension. , 2002, American journal of physiology. Gastrointestinal and liver physiology.

[67]  R. Andriantsitohaina,et al.  Endothelial COX-1 and -2 differentially affect reactivity of MVB in portal hypertensive rats. , 2002, American journal of physiology. Gastrointestinal and liver physiology.

[68]  M. Koglin,et al.  Biliverdin IX is an endogenous inhibitor of soluble guanylyl cyclase. , 2002, Biochemical pharmacology.

[69]  R. Moreau,et al.  Role of shear stress in aortic eNOS up-regulation in rats with biliary cirrhosis. , 2002, Gastroenterology.

[70]  R. Groszmann,et al.  Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension. , 2002, American journal of physiology. Heart and circulatory physiology.

[71]  W. Chu,et al.  Emphysematous gastritis associated with gastric infarction in a patient with adult polycystic renal disease: CT diagnosis. , 2002, AJR. American journal of roentgenology.

[72]  R. Cunha,et al.  Adenosine A2A receptors in portal hypertension: their role in the abnormal response to adenosine of the cranial mesenteric artery in rabbits , 2002, British journal of pharmacology.

[73]  R. Bataller,et al.  Increased plasma levels of neuropeptide Y in hepatorenal syndrome. , 2002, Journal of hepatology.

[74]  R. Lefkowitz,et al.  The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. , 2002, Journal of cell science.

[75]  R. Martı́n-Ruiz,et al.  Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. , 2002, Gastroenterology.

[76]  D. Helfman,et al.  Post-transcriptional down-regulation of ROCKI/Rho-kinase through an MEK-dependent pathway leads to cytoskeleton disruption in Ras-transformed fibroblasts. , 2002, Molecular biology of the cell.

[77]  W. Sessa,et al.  Post-translational control of endothelial nitric oxide synthase: why isn't calcium/calmodulin enough? , 2001, The Journal of pharmacology and experimental therapeutics.

[78]  T. Sauerbruch,et al.  Contractile hyporesponsiveness of hepatic arteries in humans with cirrhosis: Evidence for a receptor‐specific mechanism , 2001, Hepatology.

[79]  R. Lefkowitz,et al.  Beta-Arrestins: new roles in regulating heptahelical receptors' functions. , 2001, Cellular signalling.

[80]  M. Gimeno,et al.  Nitric oxide synthase activity in the splanchnic vasculature of patients with cirrhosis: relationship with hemodynamic disturbances. , 2001, Journal of hepatology.

[81]  R. Moreau,et al.  Role of small-conductance Ca2+-dependent K+ channels in in vitro nitric oxide-mediated aortic hyporeactivity to alpha-adrenergic vasoconstriction in rats with cirrhosis. , 2001, Journal of hepatology.

[82]  A. Sanyal,et al.  Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis , 2001, Nature Medicine.

[83]  G. Pfitzer highlighted topics Signal Transduction in Smooth Muscle Invited Review: Regulation of myosin phosphorylation in smooth muscle , 2022 .

[84]  R. Lefkowitz,et al.  Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. , 2001, Current opinion in cell biology.

[85]  T. Hunter,et al.  Guanylyl Cyclase-linked Natriuretic Peptide Receptors: Structure and Regulation* , 2001, The Journal of Biological Chemistry.

[86]  S. Ferguson,et al.  Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. , 2001, Pharmacological reviews.

[87]  J. García-Estañ,et al.  Mesenteric hyporesponsiveness in cirrhotic rats with ascites : role of cGMP and K+ channels , 2000 .

[88]  R. Schrier,et al.  Update on peripheral arterial vasodilation, ascites and hepatorenal syndrome in cirrhosis. , 2000, Canadian journal of gastroenterology = Journal canadien de gastroenterologie.

[89]  R. Moreau,et al.  Evidence for an endothelium‐derived hyperpolarizing factor in the superior mesenteric artery from rats with cirrhosis , 2000, Hepatology.

[90]  F. Hofmann,et al.  Mechanisms of NO/cGMP-dependent vasorelaxation. , 2000, Circulation research.

[91]  H. Schild,et al.  Long term outcome after transjugular intrahepatic portosystemic stent-shunt in non-transplant cirrhotics with hepatorenal syndrome: a phase II study , 2000, Gut.

[92]  R. Moreau,et al.  Changes in protein kinase C isoforms in association with vascular hyporeactivity in cirrhotic rat aortas. , 2000, Gastroenterology.

[93]  F. Hofmann,et al.  Rising behind NO: cGMP-dependent protein kinases. , 2000, Journal of cell science.

[94]  P. Hayes,et al.  Selective alteration of agonist-mediated contraction in hepatic arteries isolated from patients with cirrhosis. , 2000, Gastroenterology.

[95]  A. Somlyo,et al.  Signal transduction by G‐proteins, Rho‐kinase and protein phosphatase to smooth muscle and non‐muscle myosin II , 2000, The Journal of physiology.

[96]  J. García-Estañ,et al.  Mesenteric hyporesponsiveness in cirrhotic rats with ascites: role of cGMP and K+ channels. , 2000, Clinical science.

[97]  R. Groszmann,et al.  Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. , 1999, The Journal of clinical investigation.

[98]  R. Moreau,et al.  Relationship between vascular reactivity in vitro and blood flows in rats with cirrhosis. , 1999, Clinical science.

[99]  C. Chagneau,et al.  Abnormal regulation of aortic NOS2 and NOS3 activity and expression from portal vein‐stenosed rats after lipopolysaccharide administration , 1999, Hepatology.

[100]  R. Groszmann,et al.  Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension. , 1999, American journal of physiology. Gastrointestinal and liver physiology.

[101]  R. Busse,et al.  Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation , 1999, Nature.

[102]  M. Bünemann,et al.  G‐protein coupled receptor kinases as modulators of G‐protein signalling , 1999, The Journal of physiology.

[103]  R. Moreau,et al.  Vascular nitric oxide production during the development of two experimental models of portal hypertension. , 1999, Journal of hepatology.

[104]  R. Groszmann,et al.  NO overproduction by eNOS precedes hyperdynamic splanchnic circulation in portal hypertensive rats. , 1999, American journal of physiology. Gastrointestinal and liver physiology.

[105]  T. Sauerbruch,et al.  Altered adrenergic responsiveness of endothelium-denuded hepatic arteries and portal veins in patients with cirrhosis. , 1999, Gastroenterology.

[106]  C. Chagneau,et al.  Endothelium-dependent blunted membrane potential responses to ATP-sensitive K+ channel modulators in aortae from rats with cirrhosis. , 1999, Journal of hepatology.

[107]  X. Wu,et al.  Pharmacomechanical coupling: the role of calcium, G-proteins, kinases and phosphatases. , 1999, Reviews of physiology, biochemistry and pharmacology.

[108]  T. Sauerbruch,et al.  Nitrite and nitrate levels in patients with cirrhosis of the liver: influence of kidney function and fasting state. , 1999, Scandinavian journal of gastroenterology.

[109]  R. Groszmann,et al.  Enhanced release of nitric oxide in response to changes in flow and shear stress in the superior mesenteric arteries of portal hypertensive rats , 1998, Hepatology.

[110]  J. Prieto,et al.  Circulating adrenomedullin in cirrhosis: relationship to hyperdynamic circulation. , 1998, Journal of hepatology.

[111]  J. García-Estañ,et al.  Role of cyclic guanosine monophosphate and K+ channels as mediators of the mesenteric vascular hyporesponsiveness in portal hypertensive rats , 1998, Hepatology.

[112]  R. Moreau,et al.  Protein kinase C alterations in aortic vascular smooth muscle cells from rats with cirrhosis. , 1998, Journal of hepatology.

[113]  R. Bataller,et al.  Increased adrenomedullin levels in cirrhosis: relationship with hemodynamic abnormalities and vasoconstrictor systems. , 1998, Gastroenterology.

[114]  P. Cahill,et al.  Enhanced cyclooxygenase‐1 expression within the superior mesenteric artery of portal hypertensive rats: Role in the hyperdynamic circulation , 1998, Hepatology.

[115]  E. Hanisch,et al.  Time course-dependent evolution of nitric oxide-mediated arterial hyporeactivity to phenylephrine in rats with ligated bile duct. , 1998, Scandinavian journal of gastroenterology.

[116]  G. Stalder,et al.  Hyposensitivity to nerve stimulation in portal hypertensive rats: role of nitric oxide , 1997, European journal of clinical investigation.

[117]  Shuh Narumiya,et al.  Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension , 1997, Nature.

[118]  J. Crespo,et al.  Plasma adrenomedullin levels in patients with hepatic cirrhosis. , 1997, The American journal of gastroenterology.

[119]  S. D. Lee,et al.  Hyperdynamic circulation of cirrhotic rats with ascites: role of endotoxin, tumour necrosis factor-alpha and nitric oxide. , 1997, Clinical science.

[120]  R. Stauber,et al.  Nitric oxide‐dependent and ‐independent vascular hyporeactivity in mesenteric arteries of portal hypertensive rats , 1997, British journal of pharmacology.

[121]  P. Sogni,et al.  Induction of nitric oxide synthase II does not account for excess vascular nitric oxide production in experimental cirrhosis. , 1997, Journal of hepatology.

[122]  R. Moreau,et al.  Plasma concentrations of cyclic 3′,5′‐guanosine monophosphate in patients with cirrhosis: Relationship with atrial natriuretic peptide and haemodynamics , 1997, Journal of gastroenterology and hepatology.

[123]  N. Bunnett,et al.  Regulatory mechanisms that modulate signalling by G-protein-coupled receptors. , 1997, The Biochemical journal.

[124]  W. Jiménez,et al.  Increased nitric oxide synthase expression in arterial vessels of cirrhotic rats with ascites. , 1996, Hepatology.

[125]  J. García-Estañ,et al.  Vascular hyporesponsiveness in aortic rings from cirrhotic rats: role of nitric oxide and endothelium. , 1996, Clinical science.

[126]  K. Morris,et al.  Comparison of vascular nitric oxide production and systemic hemodynamics in cirrhosis versus prehepatic portal hypertension in rats , 1996, Hepatology.

[127]  S. S. Lee,et al.  Cirrhotic cardiomyopathy: Getting to the heart of the matter , 1996, Hepatology.

[128]  R. Groszmann,et al.  Thalidomide inhibits tumor necrosis factor α, decreases nitric oxide synthesis, and ameliorates the hyperdynamic circulatory syndrome in portal‐hypertensive rats , 1996, Hepatology.

[129]  S. Orlov,et al.  cAMP signaling inhibits dihydropyridine-sensitive Ca2+ influx in vascular smooth muscle cells. , 1996, Hypertension.

[130]  R. Schrier,et al.  Upregulation of endothelial constitutive NOS: a major role in the increased NO production in cirrhotic rats. , 1996, The American journal of physiology.

[131]  R. Sabra,et al.  Adenosine does not mediate renal sodium retention and peripheral vasodilation elicited by partial portal vein ligation in rats , 1996, Hepatology.

[132]  G. Burnstock,et al.  Mesenteric vasodilator responses in cirrhotic rats: A role for nitric oxide , 1996, Hepatology.

[133]  R. Schrier,et al.  Endothelium‐dependent vascular hyporesponsiveness without detection of nitric oxide synthase induction in aortas of cirrhotic rats , 1995, Hepatology.

[134]  R. Schrier,et al.  Normalization of nitric oxide production corrects arterial vasodilation and hyperdynamic circulation in cirrhotic rats. , 1995, Gastroenterology.

[135]  J. Wallace,et al.  Impaired vasodilatory responses in the gastric microcirculation of anesthetized rats with secondary biliary cirrhosis. , 1995, Gastroenterology.

[136]  R. Pilz,et al.  Basis of guanylate cyclase activation by carbon monoxide. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[137]  R. Groszmann,et al.  Tumor necrosis factor α: A major contributor to the hyperdynamic circulation in prehepatic portal-hypertensive rats , 1995 .

[138]  H. Lin,et al.  Change in vascular cAMP and cGMP contents in portal hypertensive rats. , 1995, Pharmacology.

[139]  R. Moreau,et al.  Lack of vascular hyporesponsiveness to the L-type calcium channel activator, Bay K 8644, in rats with cirrhosis. , 1995, Journal of hepatology.

[140]  R. Groszmann,et al.  Tumor necrosis factor alpha: a major contributor to the hyperdynamic circulation in prehepatic portal-hypertensive rats. , 1995, Gastroenterology.

[141]  P. Pizcueta,et al.  Effects of continued NO inhibition on portal hypertensive syndrome after portal vein stenosis in rat. , 1994, The American journal of physiology.

[142]  V. Arroyo,et al.  Increased nitric oxide—dependent vasorelaxation in aortic rings of cirrhotic rats with ascites , 1994, Hepatology.

[143]  N. Mcintyre,et al.  Alteration in vascular reactivity in isolated aortic rings from portal vein—constricted rats , 1994, Hepatology.

[144]  R. Moreau,et al.  Vascular hyporesponsiveness to endothelin 1 in rats with cirrhosis. , 1994, Gastroenterology.

[145]  P. Cahill,et al.  Altered adenylyl cyclase activities and G-protein abnormalities in portal hypertensive rabbits. , 1994, The Journal of clinical investigation.

[146]  M. Marletta,et al.  Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. , 1994, Biochemistry.

[147]  Han‐Chieh Lin,et al.  Study on the vascular reactivity and α1‐adrenoceptors of portal hypertensive rats , 1994 .

[148]  J. Kuo,et al.  Study on the vascular reactivity and alpha 1-adrenoceptors of portal hypertensive rats. , 1994, British journal of pharmacology.

[149]  R. Moreau,et al.  Altered control of vascular tone by adenosine triphosphate-sensitive potassium channels in rats with cirrhosis. , 1994, Gastroenterology.

[150]  J. Prieto,et al.  Atrial natriuretic factor in cirrhosis: relationship to renal function and hemodynamic changes. , 1994, Journal of hepatology.

[151]  N. Mcintyre,et al.  Altered prostacyclin synthesis by aortae from hepatic portal vein-constricted rats: evidence for effects on protein kinase C and calcium. , 1994, Journal of hepatology.

[152]  R. Moreau,et al.  Role of prostacyclin in hemodynamic alterations in conscious rats with extrahepatic or intrahepatic portal hypertension , 1993, Hepatology.

[153]  R. Groszmann,et al.  The role of nitric oxide in the vascular hyporesponsiveness to methoxamine in portal hypertensive rats , 1992, Hepatology.

[154]  R. Groszmann,et al.  Nitric oxide mediates hyporeactivity to vasopressors in mesenteric vessels of portal hypertensive rats. , 1992, Gastroenterology.

[155]  R. Moreau,et al.  Effects of theophylline on hemodynamics and tissue oxygenation in patients with cirrhosis. , 1992, Journal of hepatology.

[156]  M. Navasa,et al.  Lymphocyte beta 2-adrenoceptors and plasma catecholamines in patients with cirrhosis. , 1992, Gastroenterology.

[157]  R. Groszmann,et al.  In vitro hyporeactivity to methoxamine in portal hypertensive rats: reversal by nitric oxide blockade. , 1992, The American journal of physiology.

[158]  E. Chilton,et al.  Adenosine receptor blockade reduces splanchnic hyperemia in cirrhotic rats , 1992, Hepatology.

[159]  R. Groszmann,et al.  Temporal relationship of peripheral vasodilatation, plasma volume expansion and the hyperdynamic circulatory state in portal‐hypertensive rats , 1992, Hepatology.

[160]  R. Moreau,et al.  Blockade of ATP-sensitive K+ channels by glibenclamide reduces portal pressure and hyperkinetic circulation in portal hypertensive rats. , 1992, Journal of hepatology.

[161]  C. Gaudin,et al.  Adenosine and hemodynamic alterations in cirrhotic rats. , 1991, The American journal of physiology.

[162]  A. Gerbes Ascites and renal dysfunction in liver disease , 1989 .

[163]  Vicente Arroyo,et al.  Peripheral arterial vasodilation hypothesis: A proposal for the initiation of renal sodium and water retention in cirrhosis , 1988, Hepatology.

[164]  R. Schrier,et al.  Elevated Plasma Norepinephrine Concentrations in Decompensated Cirrhosis: Association with Increased Secretion Rates, Normal Clearance Rates, and Suppressibility by Central Blood Volume Expansion , 1985, Circulation research.

[165]  N. Christensen,et al.  Splanchnic and renal elimination and release of catecholamines in cirrhosis. Evidence of enhanced sympathetic nervous activity in patients with decompensated cirrhosis. , 1984, Gut.

[166]  J. Stull,et al.  Regulation of Myosin Phosphorylation in Smooth Muscle , 1984 .

[167]  S. Kobayashi,et al.  Relationship between cyclic AMP-dependent protein kinase activation and Ca uptake increase of sarcoplasmic reticulum fraction of hog biliary muscles relaxed by cholecystokinin-C-terminal peptides. , 1982, Biochemical pharmacology.