A quantum primality test with order finding
暂无分享,去创建一个
[1] J. Ward,et al. Book Review: Proceedings of the Third International Conference on Spectral and High Order Methods@@@Book Review: An introduction to computational geometry for curves and surfaces@@@Book Review: The mathematics of surfaces@@@Book Review: Algorithmic number theory, Volume I: Efficient algorithms , 1998 .
[2] R. V. Meter,et al. Fast quantum modular exponentiation , 2004, quant-ph/0408006.
[3] Volker Strassen,et al. A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..
[4] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[5] J. S. Gage. The great Internet Mersenne prime search. , 1998, M.D. computing : computers in medical practice.
[6] J. Nicolas. Petites valeurs de la fonction d'Euler , 1983 .
[7] C. Pomerance,et al. There are infinitely many Carmichael numbers , 1994 .
[8] Gary L. Miller. Riemann's Hypothesis and Tests for Primality , 1976, J. Comput. Syst. Sci..
[9] Christof Zalka. Fast versions of Shor's quantum factoring algorithm , 1998 .
[10] C. Pomerance. Very short primality proofs , 1987 .
[11] Daniel J. Bernstein,et al. Detecting perfect powers in essentially linear time , 1998, Math. Comput..
[12] A. Carlini,et al. Quantum Probabilistic Subroutines and Problems in Number Theory , 1999 .
[13] Preskill,et al. Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[14] R. Carmichael. On Composite Numbers P Which Satisfy the Fermat Congruence a P-1 ≡1 mod P , 1912 .
[15] D. H. Lehmer,et al. New primality criteria and factorizations of 2^{}±1 , 1975 .
[16] Vaughan R. Pratt,et al. Every Prime has a Succinct Certificate , 1975, SIAM J. Comput..
[17] É. Lucas. Theorie des Fonctions Numeriques Simplement Periodiques , 1878 .
[18] Manindra Agrawal,et al. PRIMES is in P , 2004 .
[19] J. Rosser,et al. Approximate formulas for some functions of prime numbers , 1962 .
[20] J. Dixon. Factorization and Primality Tests , 1984 .
[21] H. Chau,et al. Primality Test Via Quantum Factorization , 1995, quant-ph/9508005.
[22] D. H. Lehmer. Tests for primality by the converse of Fermat’s theorem , 1927 .
[23] Barenco,et al. Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[24] C. Pomerance,et al. Prime Numbers: A Computational Perspective , 2002 .
[25] Arnold Schönhage,et al. Schnelle Multiplikation großer Zahlen , 1971, Computing.
[26] M. Rabin. Probabilistic algorithm for testing primality , 1980 .