Context-sensitive dependency pairs

Termination is one of the most interesting problems when dealing with context-sensitive rewrite systems. Although there is a good number of techniques for proving termination of context-sensitive rewriting (CSR), the dependency pair approach, one of the most powerful techniques for proving termination of rewriting, has not been investigated in connection with proofs of termination of CSR. In this paper, we show how to use dependency pairs in proofs of termination of CSR. The implementation and practical use of the developed techniques yield a novel and powerful framework which improves the current state-of-the-art of methods for proving termination of CSR.

[1]  Jürgen Giesl,et al.  Automatic Termination Proofs in the Dependency Pair Framework , 2006, IJCAR.

[2]  Jürgen Giesl,et al.  Proving and Disproving Termination of Higher-Order Functions , 2005, FroCoS.

[3]  Jürgen Giesl,et al.  Termination of term rewriting using dependency pairs , 2000, Theor. Comput. Sci..

[4]  Salvador Lucas,et al.  Recursive Path Orderings Can Be Context-Sensitive , 2002, CADE.

[5]  Raúl Gutiérrez,et al.  Improving Context-Sensitive Dependency Pairs , 2008, LPAR.

[6]  Raúl Gutiérrez,et al.  Usable Rules for Context-Sensitive Rewrite Systems , 2008, RTA.

[7]  Aart Middeldorp,et al.  Approximating Dependency Graphs Using Tree Automata Techniques , 2001, IJCAR.

[8]  Salvador Lucas,et al.  Simple termination of context-sensitive rewriting , 2002, RULE '02.

[9]  Maria C. F. Ferreira,et al.  Context-Sensitive AC-Rewriting , 1999, RTA.

[10]  Salvador Lucas Alba,et al.  Using Matrix interpretations over the reals in proofs of termination , 2009 .

[11]  Raúl Gutiérrez Gil Context-Sensitive Dependency Pairs Framework , 2011 .

[12]  Salvador Lucas Practical use of polynomials over the reals in proofs of termination , 2007, PPDP '07.

[13]  Raúl Gutiérrez,et al.  Proving Termination of Context-Sensitive Rewriting with MU-TERM , 2007, PROLE.

[14]  Salvador Lucas Context-sensitive rewriting strategies , 2002 .

[15]  José Meseguer,et al.  Order-sorted dependency pairs , 2008, PPDP.

[16]  Salvador Lucas,et al.  Polynomials for Proving Termination of Context-Sensitive Rewriting , 2004, FoSSaCS.

[17]  Jörg Endrullis,et al.  From Outermost to Context-Sensitive Rewriting , 2009, RTA.

[18]  Roberto Bruni,et al.  Semantic foundations for generalized rewrite theories , 2006, Theor. Comput. Sci..

[19]  Salvador Lucas,et al.  On-demand strategy annotations revisited: An improved on-demand evaluation strategy , 2010, Theor. Comput. Sci..

[20]  Simon L. Peyton Jones,et al.  Report on the programming language Haskell: a non-strict, purely functional language version 1.2 , 1992, SIGP.

[21]  Francisco Durán,et al.  Proving termination of membership equational programs , 2004, PEPM '04.

[22]  Enno Ohlebusch,et al.  Advanced Topics in Term Rewriting , 2002, Springer New York.

[23]  Salvador Lucas,et al.  Polynomials over the reals in proofs of termination: from theory to practice , 2005, RAIRO Theor. Informatics Appl..

[24]  Ataru T. Nakagawa,et al.  An overview of CAFE specification environment-an algebraic approach for creating, verifying, and maintaining formal specifications over networks , 1997, First IEEE International Conference on Formal Engineering Methods.

[25]  Nachum Dershowitz,et al.  Termination by Abstraction , 2004, ICLP.

[26]  Bernhard Gramlich,et al.  VMTL-A Modular Termination Laboratory , 2009, RTA.

[27]  Nao Hirokawa,et al.  Automating the Dependency Pair Method , 2005, CADE.

[28]  Terese Term rewriting systems , 2003, Cambridge tracts in theoretical computer science.

[29]  Yoshihito Toyama,et al.  Argument Filtering Transformation , 1999, PPDP.

[30]  Salvador Lucas,et al.  Proving termination of context-sensitive rewriting by transformation , 2006, Inf. Comput..

[31]  Michael Leuschel,et al.  Efficient and flexible access control via logic program specialisation , 2004, PEPM '04.

[32]  Bernhard Gramlich,et al.  Termination of Lazy Rewriting Revisited , 2008, WRS@RDP.

[33]  Hans Zantema,et al.  Matrix Interpretations for Proving Termination of Term Rewriting , 2006, Journal of Automated Reasoning.

[34]  Aart Middeldorp,et al.  Approximations for Strategies and Termination , 2002, WRS.

[35]  René Thiemann,et al.  The DP framework for proving termination of term rewriting , 2007 .

[36]  José Meseguer,et al.  Principles of OBJ2 , 1985, POPL.

[37]  Salvador Lucas,et al.  mu-term: A Tool for Proving Termination of Context-Sensitive Rewriting , 2004, RTA.

[38]  Raúl Gutiérrez,et al.  Improving the Context-sensitive Dependency Graph , 2007, PROLE.

[39]  Salvador Lucas,et al.  Context-sensitive Computations in Functional and Functional Logic Programs , 1998, J. Funct. Log. Program..

[40]  Enno Ohlebusch,et al.  Modular Termination Proofs for Rewriting Using Dependency Pairs , 2002, J. Symb. Comput..

[41]  Salvador Lucas,et al.  Termination of on-demand rewriting and termination of OBJ programs , 2001, PPDP '01.

[42]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[43]  Joseph A. Goguen,et al.  Software Engineering with OBJ , 2000, Advances in Formal Methods.

[44]  Jürgen Giesl,et al.  The Dependency Pair Framework: Combining Techniques for Automated Termination Proofs , 2005, LPAR.

[45]  Jürgen Giesl,et al.  Transformation techniques for context-sensitive rewrite systems , 2004, J. Funct. Program..

[46]  Nao Hirokawa,et al.  Dependency Pairs Revisited , 2004, RTA.

[47]  José Meseguer,et al.  Operational Termination of Membership Equational Programs: the Order-Sorted Way , 2009, WRLA.

[48]  Jürgen Giesl,et al.  Mechanizing and Improving Dependency Pairs , 2006, Journal of Automated Reasoning.

[49]  Narciso Martí-Oliet,et al.  All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting Logic , 2007, All About Maude.

[50]  Hans Zantema,et al.  Termination of Context-Sensitive Rewriting , 1997, RTA.

[51]  Nao Hirokawa,et al.  Tyrolean termination tool: Techniques and features , 2007, Inf. Comput..

[52]  Marko C. J. D. van Eekelen,et al.  Concurrent Clean , 1991, PARLE.

[53]  Paul Hudak,et al.  A gentle introduction to Haskell , 1992, SIGP.

[54]  Francisco Durán,et al.  Proving operational termination of membership equational programs , 2008, High. Order Symb. Comput..

[55]  John McCarthy,et al.  Recursive functions of symbolic expressions and their computation by machine, Part I , 1960, Commun. ACM.

[56]  Salvador Lucas,et al.  Termination of Context-Sensitive Rewriting by Rewriting , 1996, ICALP.

[57]  Jürgen Giesl,et al.  Transforming Context-Sensitive Rewrite Systems , 1999, RTA.

[58]  T. Arts Automatically proving termination and innermost normalisation of term rewriting systems , 2001 .

[59]  Salvador Lucas,et al.  Termination of Innermost Context-Sensitive Rewriting Using Dependency Pairs , 2007, FroCoS.

[60]  Mirtha-Lina Fernández Relaxing monotonicity for innermost termination , 2005 .