On Synthesis of Linear Quantum Stochastic Systems by Pure Cascading

Recently, it has been demonstrated that an arbitrary linear quantum stochastic system can be realized as a cascade connection of simpler one degree of freedom quantum harmonic oscillators together with a direct interaction Hamiltonian which is bilinear in the canonical operators of the oscillators. However, from an experimental point of view, realizations by pure cascading, without a direct interaction Hamiltonian, would be much simpler to implement and this raises the natural question of what class of linear quantum stochastic systems are realizable by cascading alone. This technical note gives a precise characterization of this class of linear quantum stochastic systems and then it is proved that, in the weaker sense of transfer function realizability, all passive linear quantum stochastic systems belong to this class. A constructive example is given to show the transfer function realization of a two degrees of freedom passive linear quantum stochastic system by pure cascading.

[1]  Andrea Bergamasco,et al.  The Dynamics of the Coastal Region of the Northern Adriatic Sea , 1983 .

[2]  Timothy C. Ralph,et al.  A Guide to Experiments in Quantum Optics, 2nd, Revised and Enlarged Edition , 2004 .

[3]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[4]  T. F. Jordan,et al.  Vertical Structure of Time-Dependent Flow Dominated by Friction in a Well-Mixed Fluid , 1980 .

[5]  R. Gressang,et al.  Observers for systems characterized by semigroups , 1975 .

[6]  A C Doherty,et al.  Optimal unravellings for feedback control in linear quantum systems. , 2005, Physical review letters.

[7]  Göran Lindblad Brownian motion of quantum harmonic oscillators: Existence of a subdynamics , 1998 .

[8]  N. Yamamoto Robust observer for uncertain linear quantum systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[9]  R. Curtain Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input , 1982 .

[10]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[11]  M. R. James,et al.  Squeezing Components in Linear Quantum Feedback Networks , 2009, 0906.4860.

[12]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[13]  P. Malanotte Rizzoli,et al.  Coastal boundary layers in ocean modelling: an application to the Adriatic Sea , 1981 .

[14]  Ian R. Petersen Cascade cavity realization for a class of complex transfer functions arising in coherent quantum feedback control , 2009, ECC.

[15]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[16]  Hidenori Kimura,et al.  Transfer function approach to quantum Control-Part II: Control concepts and applications , 2003, IEEE Trans. Autom. Control..

[17]  Brian D. O. Anderson,et al.  Network Analysis and Synthesis: A Modern Systems Theory Approach , 2006 .

[18]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[19]  Vagn Walfrid Ekman,et al.  On the influence of the earth's rotation on ocean-currents. , 1905 .

[20]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[21]  V. P. Belavkin,et al.  Optimal Quantum Filtering and Quantum Feedback Control , 2005 .

[22]  Hideo Mabuchi,et al.  Coherent-feedback quantum control with a dynamic compensator , 2008, 0803.2007.

[23]  C. B. Fandry Model for the three-dimensional structure of wind-driven and tidal circulation in Bass Strait , 1983 .

[24]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[25]  N. Heaps,et al.  On the numerical solution of the three-dimensional hydrodynamical equations for tides and storm surges , 1972 .

[26]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[27]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[28]  M. Yanagisawa,et al.  Linear quantum feedback networks , 2008 .

[29]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[30]  Viacheslav P. Belavkin,et al.  Quantum Filtering and Optimal Control , 2008 .

[31]  Ian R. Petersen,et al.  Coherent quantum LQG control , 2007, Autom..

[32]  D. Luenberger An introduction to observers , 1971 .

[33]  Hendra Ishwara Nurdin,et al.  Network Synthesis of Linear Dynamical Quantum Stochastic Systems , 2008, SIAM J. Control. Optim..

[34]  Ian R. Petersen,et al.  Avoiding entanglement sudden death via measurement feedback control in a quantum network , 2008, 0806.4754.

[35]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[36]  Hendra Ishwara Nurdin Synthesis of linear quantum stochastic systems via quantum feedback networks , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[37]  George Z. Forristall,et al.  Three‐dimensional structure of storm‐generated currents , 1974 .

[38]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[39]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.