Scalability of small-aperture selectively oxidized vertical cavity lasers

We analyze the threshold properties of small area selectively oxidized vertical cavity lasers. Agreement for threshold gain versus laser size is found using the experimental intrinsic threshold voltage matched with a gain theory, as compared to a two-dimensional optical cavity simulation. Our analysis indicates the increasing threshold current density of small area lasers arises from both increasing threshold gain and the concomitant increasing leakage current. We further show that the optical loss can be reduced for lasers with areas as small as 0.25 μm2 while maintaining sufficient transverse optical confinement by displacing the apertures longitudinally away from the cavity and reducing the oxide thickness.

[1]  Stephan W Koch,et al.  Semiconductor-Laser Physics , 1994 .

[2]  Brian Thibeault,et al.  Estimation of scattering losses in dielectrically apertured vertical cavity lasers , 1996 .

[3]  G. R. Hadley,et al.  Effective index model for vertical-cavity surface-emitting lasers. , 1995, Optics letters.

[4]  K. Geib,et al.  Fabrication and performance of selectively oxidized vertical-cavity lasers , 1995, IEEE Photonics Technology Letters.

[5]  Yong-Hee Lee,et al.  780 nm oxidised vertical-cavity surface-emitting lasers with Al/sub 0.11/Ga/sub 0.89/As quantum wells , 1996 .

[6]  K. Geib,et al.  Low threshold voltage vertical-cavity lasers fabricated by selective oxidation , 1994 .

[7]  B. E. Hammons,et al.  Self-pulsing oxide-confined vertical-cavity lasers with ultralow operating current , 1996 .

[8]  L. Coldren,et al.  Reduced optical scattering loss in vertical-cavity lasers using a thin (300 /spl Aring/) oxide aperture , 1996, IEEE Photonics Technology Letters.

[9]  Kent D. Choquette,et al.  Cavity Characteristics of Selectively Oxidized Vertical-Cavity Lasers , 1995, Quantum Optoelectronics.

[10]  D. Deppe,et al.  Multiwavelength, densely-packed 2 x 2 vertical-cavity surface-emitting laser array fabricated using selective oxidation , 1996, IEEE Photonics Technology Letters.

[11]  D. Deppe,et al.  Native-Oxide Defined Ring Contact for Low Threshold Vertical-Cavity Lasers , 1994 .

[12]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[13]  Kent D. Choquette,et al.  Modal analysis of a small surface emitting laser with a selectively oxidized waveguide , 1995 .

[14]  Q. Deng,et al.  Very-low-threshold index-confined planar microcavity lasers , 1995, IEEE Photonics Technology Letters.

[15]  P. Dapkus,et al.  Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation , 1995 .

[16]  Kent D. Choquette,et al.  Threshold investigation of oxide‐confined vertical‐cavity laser diodes , 1996 .