Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects

Organic functionalization is emerging as an important area in the development of new semiconductor-based materials and devices. Direct, covalent attachment of organic layers to a semiconductor interface provides for the incorporation of many new properties, including lubrication, optical response, chemical sensing, or biocompatibility. Methods by which to incorporate organic functionality to the surfaces of semiconductors have seen immense progress in recent years, and in this article several of these approaches are reviewed. Examples are included from both dry and wet processing environments. The focus of the article is on attachment strategies that demonstrate the molecular nature of the semiconductor surface. In many cases, the surfaces mimic the reactivity of their molecular carbon or organosilane counterparts, and examples of functionalization reactions are described in which direct analogies to textbook organic and inorganic chemistry can be applied. This article addresses the expected impact of these functionalization strategies on emerging technologies in nanotechnology, sensing, and bioengineering.

[1]  N. Rösch,et al.  Geometrical structure of benzene absorbed on Si(001) , 1998 .

[2]  R. Hamers,et al.  Structure and Bonding of Ordered Organic Monolayers of 1,3,5,7-Cyclooctatetraene on the Si(001) Surface: Surface Cycloaddition Chemistry of an Antiaromatic Molecule , 1998 .

[3]  S. Bent,et al.  Evidence for a Retro-Diels−Alder Reaction on a Single Crystalline Surface: Butadienes on Ge(100) , 1998 .

[4]  W. H. Weinberg,et al.  Adsorption and thermal behavior of ethylene on Si(100)-(2 × 1) , 1992 .

[5]  C. M. Greenlief,et al.  Reaction of 1,3-cyclohexadiene with the Ge(100) surface , 1998 .

[6]  W. H. Weinberg,et al.  An STM study of the chemisorption of C2H4 on Si(001)(2 × 1) , 1993 .

[7]  J. Butler,et al.  Cycloaddition Chemistry at Surfaces: Reaction of Alkenes with the Diamond(001)-2 × 1 Surface , 2000 .

[8]  M. Prelas,et al.  Handbook of Industrial Diamonds and Diamond Films , 2018 .

[9]  W. H. Weinberg,et al.  Scanning tunneling microscopy study of benzene adsorption on Si(100)-(2×1) , 1998 .

[10]  R. Hamers,et al.  Cycloaddition Chemistry of 1,3-Dienes on the Silicon(001) Surface: Competition between (4 + 2) and (2 + 2) Reactions , 1998 .

[11]  Andrew Zangwill Physics at Surfaces , 1988 .

[12]  S. Bent,et al.  A Theoretical Study of the Structure and Thermochemistry of 1,3-Butadiene on the Ge/Si(100)-2 × 1 Surface , 2000 .

[13]  P. Avouris,et al.  Ultrahigh Vacuum Scanning Tunneling Microscope-Based Nanolithography and Selective Chemistry on Silicon Surfaces , 1996 .

[14]  J. Field The Properties of natural and synthetic diamond , 1992 .

[15]  P. Pehrsson,et al.  Surface state transitions on the reconstructed diamond C(100) surface , 1998 .

[16]  W. H. Weinberg,et al.  Alkylation of Si Surfaces Using a Two-Step Halogenation/Grignard Route , 1996 .

[17]  A. Fisher,et al.  Hydrocarbon adsorption on Si(001): When does the Si dimer bond break? , 1997 .

[18]  S. Campbell The Science and Engineering of Microelectronic Fabrication , 2001 .

[19]  R. Wolkow Controlled molecular adsorption on silicon: laying a foundation for molecular devices. , 1999, Annual review of physical chemistry.

[20]  S. Bent,et al.  Diels-Alder reactions of butadienes with the Si(100)-2×1 surface as a dienophile: Vibrational spectroscopy, thermal desorption and near edge x-ray absorption fine structure studies , 1998 .

[21]  D. Moffatt,et al.  Asymmetric Induction at a Silicon Surface , 1999 .

[22]  M. Linford,et al.  Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study , 1999 .

[23]  B. I. Craig,et al.  Structures of small hydrocarbons adsorbed on Si(001) and Si terminated β-SiC(001) , 1992 .

[24]  J. Buriak,et al.  Photopatterned Hydrosilylation on Porous Silicon. , 1998, Angewandte Chemie.

[25]  Julia G. Lyubovitsky,et al.  NEXAFS studies of adsorption of benzene on Si(100)-2×1 , 1998 .

[26]  D. Doren,et al.  Functionalization of Diamond(100) by Cycloaddition of Butadiene: First-Principles Theory , 2000 .

[27]  W. H. Weinberg,et al.  Adsorption of ethylene on the Si(100)(2 × 1) surface , 1994 .

[28]  Roald Hoffmann,et al.  Conservation of orbital symmetry , 1968 .

[29]  J. Butler,et al.  HREELS and LEED of HC(100): the 2 × 1 monohydride dimer row reconstruction , 1995 .

[30]  Jillian M. Buriak,et al.  Organometallic chemistry on silicon surfaces: formation of functional monolayers bound through Si–C bonds , 1999 .

[31]  T. Fortier,et al.  Multiple bonding geometries and binding state conversion of benzene/Si(100) , 1998 .

[32]  Krishnan Raghavachari,et al.  The surface science of semiconductor processing: gate oxides in the ever-shrinking transistor , 2002 .

[33]  N. Rösch,et al.  Electronic structure of benzene adsorbed on single-domain Si(001)-(2×1): A combined experimental and theoretical study , 1998 .

[34]  W. Carruthers,et al.  Cycloaddition reactions in organic synthesis , 1990 .

[35]  D. Moffatt,et al.  How Stereoselective Are Alkene Addition Reactions on Si(100) , 2000 .

[36]  P Connolly,et al.  Growth cone guidance and neuron morphology on micropatterned laminin surfaces. , 1993, Journal of cell science.

[37]  W. H. Weinberg,et al.  Coadsorption of hydrogen with ethylene and acetylene on Si(100)‐(2×1) , 1996 .

[38]  P. Finnie,et al.  Epitaxy: the motion picture☆ , 2002 .

[39]  W. J. Choyke,et al.  Reaction chemistry at the Si (100) surface—control through active‐site manipulation , 1986 .

[40]  J. Yates,et al.  Surface Chemistry of Silicon. , 1995 .

[41]  V. Etgens,et al.  The structure of the Ge(001)-(2 × 1) reconstruction investigated with X-ray diffraction , 1996 .

[42]  G. Lopinski,et al.  Self-directed growth of molecular nanostructures on silicon , 2000, Nature.

[43]  C. Duke Semiconductor Surface Reconstruction: The Structural Chemistry of Two-Dimensional Surface Compounds. , 1996, Chemical reviews.

[44]  W. H. Weinberg,et al.  Structure of chemisorbed acetylene on the Si(001)-(2 × 1) surface and the effect of coadsorbed atomic hydrogen , 1997 .

[45]  Jeffrey S. Moore,et al.  Nanopatterning organic monolayers on Si(100) by selective chemisorption of norbornadiene , 1997 .

[46]  George T. Wang,et al.  Cycloaddition of Cyclopentadiene and Dicyclopentadiene on Si(100)-2×1: Comparison of Monomer and Dimer Adsorption , 1999 .

[47]  D. Moffatt,et al.  Determination of the absolute chirality of individual adsorbed molecules using the scanning tunnelling microscope , 1998, Nature.

[48]  John William Hill Chemistry for changing times , 1972 .

[49]  E. Ganz,et al.  Metastable adsorption of benzene on the Si(001) surface , 1998 .

[50]  J. Boland The importance of structure and bonding in semiconductor surface chemistry: hydrogen on the Si(111)-7 × 7 surface , 1991 .

[51]  Y. Chabal High-resolution infrared spectroscopy of adsorbates on semiconductor surfaces: Hydrogen on Si(100) and Ge(100) , 1986 .

[52]  George T. Wang,et al.  Adsorption of ethylene on the Ge(100)-2×1 surface: Coverage and time-dependent behavior , 1999 .

[53]  R. Hamers,et al.  STEREOSELECTIVITY IN MOLECULE-SURFACE REACTIONS : ADSORPTION OF ETHYLENE ON THE SILICON(001) SURFACE , 1997 .

[54]  Jae Hee Song,et al.  Functionalization of Nanocrystalline Porous Silicon Surfaces with Aryllithium Reagents: Formation of Silicon−Carbon Bonds by Cleavage of Silicon−Silicon Bonds , 1998 .

[55]  K. Jordan,et al.  Theoretical Study of the Adsorption of Acetylene on the Si(001) Surface , 2000 .

[56]  Matthew R. Linford,et al.  Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon , 1995 .

[57]  Becker,et al.  Tunneling microscopy of Ge(001). , 1987, Physical review. B, Condensed matter.

[58]  R. Hoffmann,et al.  THE BARE AND ACETYLENE CHEMISORBED SI(001) SURFACE, AND THE MECHANISM OF ACETYLENE CHEMISORPTION , 1995 .

[59]  D. Doren,et al.  Cycloaddition reactions of unsaturated hydrocarbons on the Si(100)-(2×1) surface: theoretical predictions , 1998 .

[60]  D. Doren,et al.  Theoretical Prediction of a Facile Diels−Alder Reaction on the Si(100)-2×1 Surface , 1997 .

[61]  M. Linford,et al.  Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction , 1997 .

[62]  W. J. Choyke,et al.  Direct determination of absolute monolayer coverages of chemisorbed C2H2 and C2H4 on Si(100) , 1990 .

[63]  S. Bent Attaching organic layers to semiconductor surfaces , 2002 .

[64]  T. Bitzer,et al.  Route for controlled growth of ultrathin polyimide films with Si–C bonding to Si(100)-2×1 , 1999 .

[65]  W. H. Weinberg,et al.  Adsorption and decomposition of acetylene on Si(100)-(2×1) , 1992 .

[66]  Lawrence E. Larson,et al.  High-speed Si/SiGe technology for next generation wireless system applications , 1998 .

[67]  Weitao Yang,et al.  First-principles study of the structural and electronic properties of ethylene adsorption on Si(100)-(2×1) surface , 1997 .

[68]  P. E. Laibinis,et al.  Derivatization of Porous Silicon by Grignard Reagents at Room Temperature , 1998 .

[69]  R. Hamers,et al.  Cycloaddition chemistry and formation of ordered organic monolayers on silicon (001) surfaces , 1998 .

[70]  M. Meyer,et al.  Aligned microcontact printing of micrometer-scale poly-L-Lysine structures for controlled growth of cultured neurons on planar microelectrode arrays , 2000, IEEE Transactions on Biomedical Engineering.

[71]  G M Whitesides,et al.  Biological surface engineering: a simple system for cell pattern formation. , 1999, Biomaterials.

[72]  Functionalization of Diamond(100) by Diels−Alder Chemistry , 2000 .

[73]  Bernard S. Meyerson,et al.  Siliconsgermanium-based mixed-signal technology for optimization of wired and wireless telecommunications , 2000, IBM J. Res. Dev..

[74]  J. R. Arthur,et al.  Molecular beam epitaxy , 1975 .

[75]  Diels-Alder Reaction on the Clean Diamond (100) 2×1 Surface , 1999 .

[76]  Y. Ito,et al.  Surface micropatterning to regulate cell functions. , 1999, Biomaterials.

[77]  R. Cicero,et al.  Olefin additions on H-Si(111): Evidence for a surface chain reaction initiated at isolated dangling bonds , 2002 .

[78]  Y. Chabal,et al.  Ideal hydrogen termination of the Si (111) surface , 1990 .

[79]  Matthew R. Linford,et al.  Alkyl monolayers covalently bonded to silicon surfaces , 1993 .

[80]  J. Yoshinobu,et al.  The adsorbed states of ethylene on Si(100)c(4×2), Si(100)(2×1), and vicinal Si(100) 9°: Electron energy loss spectroscopy and low‐energy electron diffraction studies , 1987 .

[81]  R. Hamers,et al.  Formation of Ordered, Anisotropic Organic Monolayers on the Si(001) Surface , 1997 .

[82]  J. N. Russell,et al.  Cycloaddition chemistry of organic molecules with semiconductor surfaces. , 2000, Accounts of chemical research.

[83]  S. Bent,et al.  Vibrational Spectroscopic Studies of Diels−Alder Reactions with the Si(100)-2×1 Surface as a Dienophile , 1997 .

[84]  Rudolf M. Tromp,et al.  Electronic and geometric structure of Si(111)-(7×7) and Si(001) surfaces , 1987 .

[85]  J. Buriak,et al.  LEWIS ACID MEDIATED FUNCTIONALIZATION OF POROUS SILICON WITH SUBSTITUTED ALKENES AND ALKYNES , 1998 .

[86]  Leigh T. Canham,et al.  Lewis Acid Mediated Hydrosilylation on Porous Silicon Surfaces , 1999 .

[87]  J. Yoshinobu,et al.  The adsorption and thermal decomposition of acetylene on Si(100) and vicinal Si(100)9 , 1987 .

[88]  Rotenberg,et al.  Photoelectron diffraction imaging for C2H2 and C2H4 chemisorbed on Si(100) reveals a new bonding configuration , 2000, Physical review letters.

[89]  Peter Nordlander,et al.  Breaking individual chemical bonds via STM-induced excitations , 1996 .

[90]  J. Yates A New Opportunity in Silicon-Based Microelectronics , 1998, Science.

[91]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[92]  P. E. Laibinis,et al.  IMPROVED POLYPYRROLE/SILICON JUNCTIONS BY SURFACIAL MODIFICATION OF HYDROGEN-TERMINATED SILICON USING ORGANOLITHIUM REAGENTS , 1999 .

[93]  J R Tucker,et al.  Atomic-Scale Desorption Through Electronic and Vibrational Excitation Mechanisms , 1995, Science.