Spin-dependent Dirac electrons and valley polarization in the ferromagnetic stanene/ CrI3 van der Waals heterostructure

[1]  Yao Zhou,et al.  Epitaxial Synthesis of Monolayer PtSe2 Single Crystal on MoSe2 with Strong Interlayer Coupling. , 2019, ACS nano.

[2]  H. Mizuta,et al.  Electrically controlled valley states in bilayer graphene. , 2019, Nanoscale.

[3]  Zheng Li,et al.  Tunable valley splitting and an anomalous valley Hall effect in hole-doped WS2 by proximity coupling with a ferromagnetic MnO2 monolayer. , 2019, Nanoscale.

[4]  I. Savenko,et al.  Valley Acoustoelectric Effect. , 2019, Physical review letters.

[5]  Y. Dedkov,et al.  Dirac Electron Behavior for Spin-Up Electrons in Strongly Interacting Graphene on Ferromagnetic Mn5Ge3. , 2019, The journal of physical chemistry letters.

[6]  Zhenxiang Cheng,et al.  Valence mediated tunable magnetism and electronic properties by ferroelectric polarization switching in 2D FeI2/In2Se3 van der Waals heterostructures. , 2019, Nanoscale.

[7]  Yingchun Cheng,et al.  Enhanced Valley Splitting of Transition-Metal Dichalcogenide by Vacancies in Robust Ferromagnetic Insulating Chromium Trihalides. , 2019, ACS applied materials & interfaces.

[8]  F. Liu,et al.  Valley splitting in the van der Waals heterostructure WSe2/CrI3 : The role of atom superposition , 2019, Physical Review B.

[9]  D. Smirnov,et al.  Zeeman-Induced Valley-Sensitive Photocurrent in Monolayer MoS_{2}. , 2019, Physical review letters.

[10]  Yingchun Cheng,et al.  Triferroic Material and Electrical Control of Valley Degree of Freedom. , 2019, ACS applied materials & interfaces.

[11]  M. Eginligil,et al.  Unveiling exceptionally robust valley contrast in AA- and AB-stacked bilayer WS2. , 2019, Nanoscale horizons.

[12]  Jisang Hong,et al.  Switchable valley splitting by external electric field effect in graphene/CrI3 heterostructures , 2019, npj 2D Materials and Applications.

[13]  W. Mi,et al.  Electrical Control of Magnetic Behavior and Valley Polarization of Monolayer Antiferromagnetic MnPSe3 on an Insulating Ferroelectric Substrate from First Principles , 2019, Physical Review Applied.

[14]  Eric Pop,et al.  Spatial Separation of Carrier Spin by the Valley Hall Effect in Monolayer WSe2 Transistors. , 2019, Nano letters.

[15]  M. Cazalilla,et al.  Control of spin diffusion and suppression of the Hanle oscillation by the coexistence of spin and valley Hall effects in Dirac materials , 2018, Physical Review B.

[16]  K. T. Law,et al.  Intrinsic valley Hall transport in atomically thin MoS2 , 2018, Nature Communications.

[17]  Shengjiao Zhang,et al.  Direct observation of valley-coupled topological current in MoS2 , 2018, Science Advances.

[18]  Yanmin Yang,et al.  Induced valley splitting in monolayer MoS2 by an antiferromagnetic insulating CoO(111) substrate , 2018, Physical Review B.

[19]  Dezheng Yang,et al.  Electric field mediated large valley splitting in the van der Waals heterostructure WSe2/CrI3 , 2018, Japanese Journal of Applied Physics.

[20]  Ying Dai,et al.  Valley Polarization in Janus Single-Layer MoSSe via Magnetic Doping. , 2018, The journal of physical chemistry letters.

[21]  Z. Liao,et al.  Spin Direction-Controlled Electronic Band Structure in Two-Dimensional Ferromagnetic CrI3. , 2018, Nano letters.

[22]  Xiaodong Xu,et al.  Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2/CrI3 Heterostructures. , 2018, Nano letters.

[23]  C. Xia,et al.  Two-dimensional n -InSe/ p -GeSe(SnS) van der Waals heterojunctions: High carrier mobility and broadband performance , 2018 .

[24]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[25]  Zhongqin Yang,et al.  Large valley polarization in monolayer MoTe2 on a magnetic substrate. , 2018, Physical chemistry chemical physics : PCCP.

[26]  T. Zhu,et al.  Large valley splitting in monolayer WS 2 by proximity coupling to an insulating antiferromagnetic substrate , 2017, 1711.08545.

[27]  Zhongqin Yang,et al.  Strong magnetization and Chern insulators in compressed graphene / CrI 3 van der Waals heterostructures , 2017, 1710.06324.

[28]  J. Qi,et al.  Electric Control of the Edge Magnetization in Zigzag Stanene Nanoribbons from First Principles , 2017, Physical Review Applied.

[29]  L. Deng,et al.  The magnetic proximity effect and electrical field tunable valley degeneracy in MoS2/EuS van der Waals heterojunctions. , 2017, Nanoscale.

[30]  C. Xia,et al.  Electrostatic gating dependent multiple-band alignments in a high-temperature ferromagnetic Mg(OH) 2 /VS 2 heterobilayer , 2017 .

[31]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[32]  A. Fazzio,et al.  Two-dimensional van der Waals p-n junction of InSe/Phosphorene , 2017 .

[33]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[34]  Xiaodong Xu,et al.  Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics , 2017, Science Advances.

[35]  R. Schmidt,et al.  Valley Zeeman Splitting and Valley Polarization of Neutral and Charged Excitons in Monolayer MoTe2 at High Magnetic Fields. , 2016, Nano letters.

[36]  A. Manchon,et al.  Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals , 2015, 1509.08060.

[37]  Chi-Hang Lam,et al.  Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides , 2015, 1507.07275.

[38]  J. Qi,et al.  Giant and tunable valley degeneracy splitting in MoTe2 , 2015, 1504.04434.

[39]  A. Fazzio,et al.  Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. , 2015, Physical review letters.

[40]  Sharath Sriram,et al.  Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. , 2015, Small.

[41]  Aaron M. Jones,et al.  Magnetic control of valley pseudospin in monolayer WSe2 , 2014, Nature Physics.

[42]  D. Ralph,et al.  Breaking of valley degeneracy by magnetic field in monolayer MoSe2. , 2014, Physical review letters.

[43]  Z. Gong,et al.  Anomalously robust valley polarization and valley coherence in bilayer WS2 , 2014, Proceedings of the National Academy of Sciences.

[44]  Kang L. Wang,et al.  Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. , 2014, Nature materials.

[45]  F. Bechstedt,et al.  Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[46]  D. Ralph,et al.  Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. , 2012, Physical review letters.

[47]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[48]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[49]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[50]  Joachim Sauer,et al.  Application of semiempirical long‐range dispersion corrections to periodic systems in density functional theory , 2008, J. Comput. Chem..

[51]  Wang Yao,et al.  Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.

[52]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[53]  Georg Kresse,et al.  Fully unconstrained noncollinear magnetism within the projector augmented-wave method , 2000 .

[54]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[55]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[56]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[57]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[58]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .