Efficient Multi-hypotheses Unscented Kalman Filtering for Robust Localization
暂无分享,去创建一个
[1] H. Sorenson,et al. Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .
[2] Richard H. Middleton,et al. Multiple Model Kalman Filters: A Localization Technique for RoboCup Soccer , 2009, RoboCup.
[3] Wolfram Burgard,et al. Gaussian mixture models for probabilistic localization , 2008, 2008 IEEE International Conference on Robotics and Automation.
[4] Regina Kaune. Gaussian Mixture (GM) Passive Localization using Time Difference of Arrival (TDOA) , 2009, GI Jahrestagung.
[5] Manuela M. Veloso,et al. Sensor resetting localization for poorly modelled mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
[6] Ben Upcroft,et al. Fast re-parameterisation of Gaussian mixture models for robotics applications , 2004 .
[7] Tom Duckett,et al. Mobile robot self-localisation using occupancy histograms and a mixture of Gaussian location hypotheses , 2001, Robotics Auton. Syst..
[8] Dieter Fox,et al. An experimental comparison of localization methods continued , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.
[9] Walter Nisticò,et al. Temporal Smoothing Particle Filter for Vision based Autonomous Mobile Robot Localization , 2008, ICINCO-RA.
[10] Stefan Czarnetzki,et al. Handling heterogeneous information sources for multi-robot sensor fusion , 2010, 2010 IEEE Conference on Multisensor Fusion and Integration.
[11] Uwe D. Hanebeck,et al. Regularized non-parametric multivariate density and conditional density estimation , 2010, 2010 IEEE Conference on Multisensor Fusion and Integration.
[12] Wolfram Burgard,et al. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .