Universality property of the $S$-functional calculus, noncommuting matrix variables and Clifford operators

The spectral theory on the S-spectrum was born out of the need to give quaternionic quantum mechanics (formulated by Birkhoff and von Neumann) a precise mathematical foundation. Then it turned out that this theory has important applications in several fields such as fractional diffusion problems and, moreover, it allows one to define several functional calculi for n-tuples of noncommuting operators. With this paper we show that the spectral theory on the S-spectrum is much more general and it contains, just as particular cases, the complex, the quaternionic and the Clifford settings. More precisely, we show that the S-spectrum is well defined for objects in an algebra that has a complex structure and for operators in general Banach modules. We show that the abstract formulation of the S-functional calculus goes beyond quaternionic and Clifford analysis. Indeed we show that the S-functional calculus has a certain universality property. This fact makes the spectral theory on the S-spectrum applicable to several fields of operator theory and allows one to define functions of noncommuting matrix variables, and operator variables, as a particular case. AMS Classification 47A10, 47A60.

[1]  A direct approach to the S-functional calculus for closed operators , 2016, 1602.03910.

[2]  Regular Functions of a Quaternionic Variable , 2013 .

[3]  F. Colombo,et al.  A Structure Formula for Slice Monogenic Functions and Some of its Consequences , 2008 .

[4]  D. Struppa,et al.  Slice monogenic functions , 2007, 0708.3595.

[5]  K. Gürlebeck,et al.  Quaternionic Analysis and Elliptic Boundary Value Problems , 1989 .

[6]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[7]  Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space , 1998 .

[8]  A representation formula for slice regular functions over slice-cones in several variables. , 2020, 2011.13770.

[9]  F. Colombo,et al.  Fractional powers of vector operators with first order boundary conditions , 2020 .

[10]  D. Struppa,et al.  A new functional calculus for noncommuting operators , 2007, 0708.3594.

[11]  Joseph L. Taylor The analytic-functional calculus for several commuting operators , 1970 .

[12]  An extension theorem for slice monogenic functions and some of its consequences , 2010 .

[13]  A. Mcintosh,et al.  A functional calculus for several commuting operators , 1987 .

[14]  F. Colombo,et al.  Fractional powers of quaternionic operators and Kato's formula using slice hyperholomorphicity , 2015, 1506.01266.

[15]  Operator Theory on One-Sided Quaternionic Linear Spaces: Intrinsic S-Functional Calculus and Spectral Operators , 2018, 1803.10524.

[16]  Irene Sabadini,et al.  Slice monogenic functions of a Clifford variable via the $S$-functional calculus , 2021, Proceedings of the American Mathematical Society.

[17]  R. Ghiloni,et al.  Semigroups over real alternative *-algebras: Generation theorems and spherical sectorial operators , 2014, 1402.6443.

[18]  B. Jefferies Spectral Properties of Noncommuting Operators , 2004 .

[19]  F. Colombo,et al.  The Fueter mapping theorem in integral form and the ℱ‐functional calculus , 2010 .

[20]  I. Sabadini,et al.  S-Spectrum and the quaternionic Cayley transform of an operator , 2017, 1705.05240.

[21]  F. Sommen,et al.  Clifford Algebra and Spinor-Valued Functions , 1992 .

[22]  J. Gilbert,et al.  Clifford Algebras and Dirac Operators in Harmonic Analysis , 1991 .

[23]  D. Struppa,et al.  Duality theorems for slice hyperholomorphic functions , 2010 .

[24]  On the equivalence of complex and quaternionic quantum mechanics , 2017, 1709.07289.

[25]  The Growth and Distortion Theorems for Slice Monogenic Functions , 2014, 1410.4369.

[26]  F. Sommen,et al.  Analysis of Dirac Systems and Computational Algebra , 2004 .

[27]  Extension theorem and representation formula in non-axially symmetric domains for slice regular functions , 2020, 2003.10487.

[28]  D. Struppa,et al.  Entire slice regular functions , 2015, 1512.04215.

[29]  F. Colombo,et al.  Spectral Theory on the S-Spectrum for Quaternionic Operators , 2019 .

[30]  F. Colombo,et al.  Fractional powers of vector operators and fractional Fourier’s law in a Hilbert space , 2018, Journal of Physics A: Mathematical and Theoretical.

[31]  F. Colombo,et al.  An Introduction to Hyperholomorphic Spectral Theories and Fractional Powers of Vector Operators , 2020, 2011.10739.

[32]  P. Eberlein,et al.  Clifford Algebras , 2022 .

[33]  K. Thirulogasanthar,et al.  Squeezed States in the Quaternionic Setting , 2017, Mathematical Physics, Analysis and Geometry.

[34]  F. Colombo,et al.  Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes , 2019, Operator Theory: Advances and Applications.

[35]  D. Struppa,et al.  Noncommutative Functional Calculus: Theory and Applications of Slice Hyperholomorphic Functions , 2011 .

[36]  F. Colombo,et al.  The Cauchy formula with s-monogenic kernel and a functional calculus for noncommuting operators , 2011 .

[37]  D. Alpay,et al.  Slice Hyperholomorphic Schur Analysis , 2016 .

[38]  R. Ghiloni,et al.  Slice regular functions on real alternative algebras , 2010, 1008.4318.

[39]  K. Viswanath Normal operations on quaternionic Hilbert spaces , 1971 .

[40]  M. Peloso,et al.  The structure of the fractional powers of the noncommutative Fourier law , 2019, Mathematical Methods in the Applied Sciences.

[41]  Fabrizio Colombo,et al.  The spectral theorem for normal operators on a Clifford module , 2021, Analysis and Mathematical Physics.

[42]  D. Farenick,et al.  The spectral theorem in quaternions , 2003 .

[43]  K. Gürlebeck,et al.  Holomorphic Functions in the Plane and n-dimensional Space , 2007 .

[44]  V. Souček,et al.  The Radon transform between monogenic and generalized slice monogenic functions , 2014, Mathematische Annalen.

[45]  F. Colombo,et al.  Perturbation of normal quaternionic operators , 2017, Transactions of the American Mathematical Society.

[46]  D. Alpay,et al.  The Spectral Theorem for Unitary Operators Based on the S-Spectrum , 2014, 1403.0175.

[47]  D. Alpay,et al.  The $H^\infty$ functional calculus based on the $S$-spectrum for quaternionic operators and for $n$-tuples of noncommuting operators , 2015, 1511.07629.

[48]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[49]  D. Alpay,et al.  An extension of Herglotz's theorem to the quaternions , 2014, 1403.0079.

[50]  F. Colombo,et al.  An Application of the S-Functional Calculus to Fractional Diffusion Processes , 2018, Milan Journal of Mathematics.

[51]  Fredholm operators and essential S-spectrum in the quaternionic setting , 2018, Journal of Mathematical Physics.

[52]  D. Alpay,et al.  A New Resolvent Equation for the $$S$$S-Functional Calculus , 2013 .

[53]  Fabrizio Colombo,et al.  The Noncommutative Fractional Fourier Law in Bounded and Unbounded Domains , 2021, Complex Analysis and Operator Theory.

[54]  Tao Qian,et al.  Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces. , 1994 .

[55]  D. Alpay,et al.  The spectral theorem for quaternionic unbounded normal operators based on the S-spectrum , 2014, 1409.7010.

[56]  A. Mcintosh,et al.  The monogenic functional calculus , 1999 .

[57]  F. Colombo,et al.  On Some Properties of the Quaternionic Functional Calculus , 2009 .

[58]  Markus Haase,et al.  The Functional Calculus for Sectorial Operators , 2006 .

[59]  D. Struppa,et al.  Noncommutative Functional Calculus , 2011 .

[60]  K. Schmüdgen Unbounded Self-adjoint Operators on Hilbert Space , 2012 .

[61]  Weyl and Browder S-spectra in a right quaternionic Hilbert space , 2018, Journal of Geometry and Physics.

[62]  F. Colombo,et al.  On the formulations of the quaternionic functional calculus , 2010 .

[63]  F. Sommen,et al.  Clifford Algebra and Spinor-Valued Functions: A Function Theory For The Dirac Operator , 2012 .