Modeling distortional shear in thin-walled elastic beams

In this paper, the theoretical background and the numerical analyses of an advanced beam finite element that relaxes the hypothesis of the cross-section non-deformability are presented. The corresponding new modes, called distortional modes, are added to the modes describing the behavior of a classical thin-walled beam: tension/compression, bending and torsion. For instance, a load acting in a cross-sectional plane of a beam is considered to induce not only bending and torsion but also distortion. The distortion produces non-uniform shear and axial stresses together with a non-uniform warping of the cross-section. These resulting effects, significant for very thin-walled open profiles (and thin-walled closed profiles with high distortional loadings), are shown in this paper to be important when compared to bending and torsion stresses even in simple loading cases.