Decay of wall stabilized arcs in SF6‐N2 mixtures

The variations of temperature and conductance are calculated during the extinction of nonblown, atmospheric pressure, wall‐stabilized arcs. The validity of the computation method based on the assumption of local thermodynamic equilibrium (LTE) has first been tested by comparing the computed values of electron density with experimental values obtained by laser interferometry in SF6‐N2 mixtures during the first tens of microseconds in the extinction. The computed values of temperature and conductance have also been compared with experimental and theoretical values from the literature, in the case of pure Ar, SF6, and N2. In spite of discrepancies, due to nonequilibrium phenoma, the relative computed variations of conductance in the case of pure SF6 and N2 are comparable with the experimental variations. In the case of SF6‐N2 mixtures, and assuming LTE, the computation shows that the evolution of the mixture conductance is not systematically intermediate between those of pure SF6 and N2. For example, with a ...

[1]  J. Lowke,et al.  Radiation emission coefficients for sulfur hexafluoride arc plasmas , 1976 .

[2]  W. Hertz Messung und Deutung des Leitwertabklingens zylindrischer Bögen , 1971 .

[3]  J. Bacri,et al.  Departures from CLTE composition in a nitrogen arc at atmospheric pressure. I. Experimental results , 1983 .

[4]  G. Jones,et al.  The effects of a temperature dependent thermal diffusivity and radiation loss on arc column decay , 1968 .

[5]  U. Bauder Radiation from High‐Pressure Plasmas , 1968 .

[6]  A. Gleizes,et al.  Measurements of electron density in a SF6 arc plasma , 1985 .

[7]  R. S. Devoto TRANSPORT COEFFICIENTS OF PARTIALLY IONIZED ARGON. , 1967 .

[8]  A. Gleizes Role of recombination, ionization, diffusion and convection in a decaying argon plasma , 1981 .

[9]  C. Maury,et al.  The difference between the electron temperature and the gas temperature in a stationary arc plasma at atmospheric pressure , 1982 .

[10]  E. Schulz-Gulde Temperature determination for arcs in sulphur hexafluoride accounting for demixing , 1980 .

[11]  R. S. Devoto,et al.  Transport coefficients of high‐temperature nitrogen , 1973 .

[12]  W. Hermann,et al.  Transportfunktionen von Stickstoff bis 26000 °K , 1970 .

[13]  Calculation of thermodynamic properties and transport coefficients for SF6-N2 mixtures in the temperature range 1,000–30,000 K , 1986 .

[14]  L. S. Frost,et al.  Interruption Capability of Gases and Gas Mixtures in a Puffer-Type Interrupter , 1980, IEEE Transactions on Plasma Science.

[15]  A. Gleizes Calculation of Recombination and Ionization Coefficients in Argon , 1982 .

[16]  J. Keck,et al.  MONTE CARLO TRAJECTORY CALCULATIONS OF ATOMIC EXCITATION AND IONIZATION BY THERMAL ELECTRONS. , 1969 .

[17]  H. Wittel,et al.  Investigations of the properties of SF 6 as an arc quenching medium , 1971 .

[18]  R. E. Voshall,et al.  Decay of electrical conductance and temperature of arc plasmas , 1973 .

[19]  F. Incropera,et al.  Nonequilibrium in an arc constrictor , 1970 .

[20]  H. Lee Solutions of plasma arc equations by the orthogonal collocation method , 1983 .

[21]  J. Uhlenbusch,et al.  Influence of diffusion and nonequilibrium populations on noble-gas plasmas in electric arcs , 1971 .

[22]  J. Lowke,et al.  Negligible Effect of Negative Ions on the Constriction of Arcs in SF6 , 1972 .

[23]  Transport coefficients in arc plasma of SF6–N2 mixtures , 1983 .

[24]  W. Frie,et al.  Experimentelle und theoretische Untersuchungen des Leitwertabklingens in Stickstoffkaskadenbögen , 1967 .

[25]  A. Gleizes,et al.  Temporal changes of particle densities and temperatures in a decaying arc discharge , 1979 .

[26]  H. Kafrouni Study of electron cooling, diffusion and recombination in a decaying argon arc , 1979 .