Four-loop vacuum energy beta function in O(N) symmetric scalar theory.

The {beta} function of the vacuum energy density is computed at the four-loop level in massive O({ital N}) symmetric {phi}{sup 4} theory. Dimensional regularization is used in conjunction with the MS scheme and all calculations are in momentum space in the massive theory. The result is {beta}{sub {ital v}}=({ital N}/4){ital g}+[{ital N}({ital N}+2)/96]{ital g}{sup 3}+{l_brace}{ital N}({ital N}+2)({ital N}+8)[12{zeta}(3){minus}25]/1296{r_brace}{ital g}{sup 4}+{ital O}({ital g}{sup 5}). {copyright} {ital 1996 The American Physical Society.}

[1]  D. Broadhurst,et al.  Beyond the triangle and uniqueness relations: non-zeta counterterms at large N from positive knots , 1996, hep-th/9607174.

[2]  D. Kreimer Feynman Diagram Calculations - From finite Integral Representations to knotted Infinities , 1995, hep-ph/9505236.

[3]  D. Broadhurst,et al.  Knots and Numbers in ϕ4 Theory to 7 Loops and Beyond , 1995, hep-ph/9504352.

[4]  D. Kreimer Knots and divergences , 1995, hep-th/9503059.

[5]  D. Kreimer Renormalization and Knot Theory , 1994, q-alg/9607022.

[6]  Odintsov,et al.  Effective Lagrangian and the back-reaction problem in a self-interacting O(N) scalar theory in curved spacetime. , 1994, Physical review. D, Particles and fields.

[7]  E. Elizalde,et al.  Renormalization-group improved effective potential for interacting theories with several mass scales in curved spacetime , 1994, hep-th/9401057.

[8]  H. Kleinert,et al.  Five-loop renormalization group functions of O(n)-symmetric φ4-theory and ϵ5 , 1993 .

[9]  E. Elizalde,et al.  Renormalization-group improved effective Lagrangian for interacting theories in curved spacetime , 1993, hep-th/9311087.

[10]  D.R.T. Jones,et al.  The effective potential and the renormalisation group , 1992, hep-lat/9210033.

[11]  M. Bandō,et al.  Improving the effective potential , 1992, hep-ph/9210228.

[12]  B. Kastening Renormalization group improvement of the effective potential in massive ø4 theory , 1992, hep-ph/9207252.

[13]  H. Kleinert,et al.  Five-loop renormalization group functions of O(n)-symmetric φ4-theory and ϵ-expansions of critical exponents up to ϵ5 , 1991 .

[14]  J. Collins,et al.  New methods for the renormalization group , 1974 .