A class of local classical solutions for the one-dimensional Perona-Malik equation

We consider the Cauchy problem for the one-dimensional Perona-Malik equation u t = 1 ― u 2 x/ (1 + u 2 x ) 2 u xx in the interval [―1,1], with homogeneous Neumann boundary conditions. We prove that the set of initial data for which this equation has a local-in-time classical solution u: [―1,1] x [0,T] → ℝ is dense in C 1 ([―1, 1]). Here "classical solution" means that u, u t , u x and u xx are continuous functions in [―1,1]×[0,T].

[1]  K. Höllig Existence of infinitely many solutions for a forward backward heat equation , 1983 .

[2]  L. Caffarelli,et al.  Optimal Regularity for One-Dimensional Porous Medium Flow , 1986 .

[3]  Massimo Gobbino,et al.  Entire Solutions of the One-Dimensional Perona-Malik Equation , 2007 .

[4]  Kewei Zhang,et al.  Young measure solutions and instability of the one-dimensional Perona–Malik equation , 2005 .

[5]  Kewei Zhang,et al.  Young measure solutions of the two-dimensional Perona-Malik equation in image processing , 2006 .

[6]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[7]  Bernd Kawohl,et al.  Maximum and comparison principle for one-dimensional anisotropic diffusion , 1998 .

[8]  D. Aronson,et al.  Regularity Properties of Flows Through Porous Media , 2008 .

[9]  G. Bellettini,et al.  The $\Gamma $-limit and the related gradient flow for singular perturbation functionals of Perona-Malik type , 2008 .

[10]  Kewei Zhang,et al.  Existence of infinitely many solutions for the one-dimensional Perona-Malik model , 2006 .

[11]  Selim Esedoglu,et al.  Stability Properties of the Perona-Malik Scheme , 2006, SIAM J. Numer. Anal..

[12]  S. Esedoglu An analysis of the Perona‐Malik scheme , 2001 .

[13]  Massimo Gobbino,et al.  Gradient estimates for the Perona–Malik equation , 2007 .

[14]  Giovanni Bellettini,et al.  Global Solutions to the Gradient Flow Equation of a Nonconvex Functional , 2006, SIAM J. Math. Anal..

[15]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  D. Aronson,et al.  Regularity Propeties of Flows Through Porous Media , 1969 .

[17]  Satyanad Kichenassamy,et al.  The Perona-Malik Paradox , 1997, SIAM J. Appl. Math..