An analysis of a cell-vertex finite volume method for a parabolic convection-diffusion problem

We examine a cell-vertex finite volume method which is applied to a model parabolic convection-diffusion problem. By using techniques from finite element analysis, local errors away from all layers are obtained in a seminorm that is related to, but weaker than, the L 2 norm.

[1]  Jean Bigeon,et al.  An ‘upwind’ finite element method for electromagnetic field problems in moving media , 1987 .

[2]  Vimal Singh,et al.  Perturbation methods , 1991 .

[3]  K. W. Morton,et al.  Finite volume solutions of convection-diffusion test problems , 1993 .

[4]  Endre Süli,et al.  Finite Volume Methods and their Analysis , 1991 .

[5]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[6]  Martin Stynes,et al.  An analysis of the cell vertex method , 1994 .

[7]  E. M. de Jager,et al.  Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type , 1966 .

[8]  G. Stoyan,et al.  Modelling and computation of water quality problems in river networks , 1980 .

[9]  I. Babuška,et al.  Analysis of finite element methods for second order boundary value problems using mesh dependent norms , 1980 .

[10]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[11]  Juma Yousuf Alaydi,et al.  Heat Transfer , 2018, A Concise Manual of Engineering Thermodynamics.

[12]  Endre Süli The accuracy of cell vertex finite volume methods on quadrilateral meshes , 1992 .

[13]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[14]  H. H. Rachford,et al.  Numerical Calculation of Multidimensional Miscible Displacement , 1962 .

[15]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .