Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity

We present a new filtered low-regularity Fourier integrator for the cubic nonlinear Schrödinger equation based on recent time discretization and filtering techniques. For this new scheme, we perform a rigorous error analysis and establish better convergence rates at low regularity than known for classical schemes in the literature so far. In our error estimates, we combine the better local error properties of the new scheme with a stability analysis based on general discrete Strichartz-type estimates. The latter allow us to handle a much rougher class of solutions as the error analysis can be carried out directly at the level of $$L^2$$ L 2 compared to classical results in dimension d , which are limited to higher-order (sufficiently smooth) Sobolev spaces $$H^s$$ H s with $$s>d/2$$ s > d / 2 . In particular, we are able to establish a global error estimate in $$L^2$$ L 2 for $$H^1$$ H 1 solutions which is roughly of order $$\tau ^{ {1\over 2} + { 5-d \over 12} }$$ τ 1 2 + 5 - d 12 in dimension $$d \le 3$$ d ≤ 3 ( $$\tau $$ τ denoting the time discretization parameter). This breaks the “natural order barrier” of $$\tau ^{1/2}$$ τ 1 / 2 for $$H^1$$ H 1 solutions which holds for classical numerical schemes (even in combination with suitable filter functions).

[1]  Katharina Schratz,et al.  Uniformly Accurate Oscillatory Integrators for the Klein-Gordon-Zakharov System from Low- to High-Plasma Frequency Regimes , 2018, SIAM J. Numer. Anal..

[2]  Buyang Li,et al.  Runge–Kutta Time Discretization of Nonlinear Parabolic Equations Studied via Discrete Maximal Parabolic Regularity , 2016, Foundations of Computational Mathematics.

[3]  Christophe Besse,et al.  Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[4]  B. Cano,et al.  Exponential time integration of solitary waves of cubic Schrödinger equation , 2015 .

[5]  Katharina Schratz,et al.  An exponential-type integrator for the KdV equation , 2016, Numerische Mathematik.

[6]  Enrique Zuazua,et al.  Foundations of Computational Mathematics, Santander 2005: Dispersive Properties of Numerical Schemes for NSE , 2006 .

[7]  Erwan Faou,et al.  Geometric Numerical Integration and Schrodinger Equations , 2012 .

[8]  Guillaume Dujardin,et al.  Exponential Runge--Kutta methods for the Schrödinger equation , 2009 .

[9]  Alexander Ostermann,et al.  Low Regularity Exponential-Type Integrators for Semilinear Schrödinger Equations , 2016, Foundations of Computational Mathematics.

[10]  聡 眞崎,et al.  T. Cazenave: Semilinear Schrödinger Equations, Courant Lect. Notes Math., 10, Amer. Math. Soc., 2003年,xiv+323ページ. , 2012 .

[11]  J. Ginibre,et al.  The global Cauchy problem for the nonlinear Schrodinger equation revisited , 1985 .

[12]  P. Kevrekidis,et al.  Asymptotic behaviour of small solutions for the discrete nonlinear Schrödinger and Klein–Gordon equations , 2004, nlin/0409009.

[13]  G. Ponce,et al.  Introduction to Nonlinear Dispersive Equations , 2009 .

[14]  Robert S. Strichartz,et al.  Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .

[15]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[16]  C. Lubich,et al.  Error Bounds for Exponential Operator Splittings , 2000 .

[17]  David Cohen,et al.  One-stage exponential integrators for nonlinear Schrödinger equations over long times , 2012 .

[18]  Ludwig Gauckler,et al.  Nonlinear Schrödinger Equations and Their Spectral Semi-Discretizations Over Long Times , 2010, Found. Comput. Math..

[19]  Woocheol Choi,et al.  On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $ , 2016, Discrete & Continuous Dynamical Systems.

[20]  小澤 徹,et al.  Nonlinear dispersive equations , 2006 .

[21]  Liviu I. Ignat,et al.  A splitting method for the nonlinear Schrödinger equation , 2011 .

[22]  Roland Schnaubelt,et al.  Fractional error estimates of splitting schemes for the nonlinear Schrödinger equation , 2016 .

[23]  Elena Celledoni,et al.  Symmetric Exponential Integrators with an Application to the Cubic Schrödinger Equation , 2008, Found. Comput. Math..

[24]  Mechthild Thalhammer,et al.  Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations , 2012, SIAM J. Numer. Anal..

[25]  J. Bourgain,et al.  Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .

[26]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[27]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[28]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[29]  Enrique Zuazua,et al.  Numerical Dispersive Schemes for the Nonlinear Schrödinger Equation , 2009, SIAM J. Numer. Anal..

[30]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[31]  L. Gauckler,et al.  Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .

[32]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[33]  Erwan Faou,et al.  Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting , 2016, Math. Comput..

[34]  P. Gérard,et al.  Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds , 2004 .

[35]  E. Zuazua,et al.  Dispersive Properties of Numerical Schemes for Nonlinear Schrödinger Equations , 2005 .