Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity
暂无分享,去创建一个
Alexander Ostermann | Katharina Schratz | Fr'ed'eric Rousset | A. Ostermann | Katharina Schratz | F. Rousset
[1] Katharina Schratz,et al. Uniformly Accurate Oscillatory Integrators for the Klein-Gordon-Zakharov System from Low- to High-Plasma Frequency Regimes , 2018, SIAM J. Numer. Anal..
[2] Buyang Li,et al. Runge–Kutta Time Discretization of Nonlinear Parabolic Equations Studied via Discrete Maximal Parabolic Regularity , 2016, Foundations of Computational Mathematics.
[3] Christophe Besse,et al. Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..
[4] B. Cano,et al. Exponential time integration of solitary waves of cubic Schrödinger equation , 2015 .
[5] Katharina Schratz,et al. An exponential-type integrator for the KdV equation , 2016, Numerische Mathematik.
[6] Enrique Zuazua,et al. Foundations of Computational Mathematics, Santander 2005: Dispersive Properties of Numerical Schemes for NSE , 2006 .
[7] Erwan Faou,et al. Geometric Numerical Integration and Schrodinger Equations , 2012 .
[8] Guillaume Dujardin,et al. Exponential Runge--Kutta methods for the Schrödinger equation , 2009 .
[9] Alexander Ostermann,et al. Low Regularity Exponential-Type Integrators for Semilinear Schrödinger Equations , 2016, Foundations of Computational Mathematics.
[10] 聡 眞崎,et al. T. Cazenave: Semilinear Schrödinger Equations, Courant Lect. Notes Math., 10, Amer. Math. Soc., 2003年,xiv+323ページ. , 2012 .
[11] J. Ginibre,et al. The global Cauchy problem for the nonlinear Schrodinger equation revisited , 1985 .
[12] P. Kevrekidis,et al. Asymptotic behaviour of small solutions for the discrete nonlinear Schrödinger and Klein–Gordon equations , 2004, nlin/0409009.
[13] G. Ponce,et al. Introduction to Nonlinear Dispersive Equations , 2009 .
[14] Robert S. Strichartz,et al. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .
[15] T. Tao. Nonlinear dispersive equations : local and global analysis , 2006 .
[16] C. Lubich,et al. Error Bounds for Exponential Operator Splittings , 2000 .
[17] David Cohen,et al. One-stage exponential integrators for nonlinear Schrödinger equations over long times , 2012 .
[18] Ludwig Gauckler,et al. Nonlinear Schrödinger Equations and Their Spectral Semi-Discretizations Over Long Times , 2010, Found. Comput. Math..
[19] Woocheol Choi,et al. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $ , 2016, Discrete & Continuous Dynamical Systems.
[20] 小澤 徹,et al. Nonlinear dispersive equations , 2006 .
[21] Liviu I. Ignat,et al. A splitting method for the nonlinear Schrödinger equation , 2011 .
[22] Roland Schnaubelt,et al. Fractional error estimates of splitting schemes for the nonlinear Schrödinger equation , 2016 .
[23] Elena Celledoni,et al. Symmetric Exponential Integrators with an Application to the Cubic Schrödinger Equation , 2008, Found. Comput. Math..
[24] Mechthild Thalhammer,et al. Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations , 2012, SIAM J. Numer. Anal..
[25] J. Bourgain,et al. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .
[26] T. Tao,et al. Endpoint Strichartz estimates , 1998 .
[27] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[28] R. Danchin,et al. Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .
[29] Enrique Zuazua,et al. Numerical Dispersive Schemes for the Nonlinear Schrödinger Equation , 2009, SIAM J. Numer. Anal..
[30] T. Cazenave. Semilinear Schrodinger Equations , 2003 .
[31] L. Gauckler,et al. Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .
[32] Christian Lubich,et al. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..
[33] Erwan Faou,et al. Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting , 2016, Math. Comput..
[34] P. Gérard,et al. Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds , 2004 .
[35] E. Zuazua,et al. Dispersive Properties of Numerical Schemes for Nonlinear Schrödinger Equations , 2005 .