Amorphous PAF-1: Guiding the Rational Design of Ultraporous Materials

A number of topological structures for PAF-1 are compared with an amorphous structure for PAF-1, reproducing the ultrahigh surface area and pore volume observed experimentally. We compare the porosity properties of these structures and discuss potential structural strategies for increasing porosity and gas uptake properties. The PAF-1 network formation mechanism is simulated through use of an automated generation process, revealing the importance of the solvent in the resulting network structure and porosity properties. This opens up new rational design strategies and considerations for developing the next generation of porous framework materials.

[1]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[2]  Neil L. Campbell,et al.  Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks , 2007 .

[3]  Leonard J Barbour,et al.  Crystal porosity and the burden of proof. , 2006, Chemical communications.

[4]  M. Zwijnenburg,et al.  Isomorphism between ice and silica. , 2010, Physical chemistry chemical physics : PCCP.

[5]  C. Colina,et al.  Atomistic Structure Generation and Gas Adsorption Simulations of Microporous Polymer Networks , 2011 .

[6]  Huijun Zhao,et al.  Synthesis of porous aromatic framework with tuning porosity via ionothermal reaction. , 2012, Dalton transactions.

[7]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[8]  G. Zhu,et al.  Targeted synthesis of a 2D ordered porous organic framework for drug release. , 2011, Chemical communications.

[9]  Robert G. Bell,et al.  Isomorphism of anhydrous tetrahedral halides and silicon chalcogenides: energy landscape of crystalline BeF2, BeCl2, SiO2, and SiS2. , 2008, Journal of the American Chemical Society.

[10]  Michael Treacy,et al.  Enumeration of periodic tetrahedral frameworks , 1997 .

[11]  François-Xavier Coudert,et al.  Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues , 2009 .

[12]  Dewi W. Lewis,et al.  De novo design of structure-directing agents for the synthesis of microporous solids , 1996, Nature.

[13]  J. Authelin,et al.  Water clusters in amorphous pharmaceuticals. , 2014, Journal of pharmaceutical sciences.

[14]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[15]  A. Cooper,et al.  High Surface Area Conjugated Microporous Polymers: The Importance of Reaction Solvent Choice , 2010 .

[16]  Pablo Ballester,et al.  Cover Picture: Inclusion of Cavitands and Calix[4]arenes into a Metallobridged para‐(1H‐Imidazo[4,5‐f][3,8]phenanthrolin‐2‐yl)‐Expanded Calix[4]arene (Angew. Chem. Int. Ed. 1‐2/2007) , 2007 .

[17]  K. Müllen,et al.  Arylamine-substituted oligo(ladder-type pentaphenylene)s: electronic communication between bridged redox centers. , 2007, Journal of the American Chemical Society.

[18]  F. Švec,et al.  Nanoporous polymers for hydrogen storage. , 2009, Small.

[19]  Cheetham,et al.  Open-Framework Inorganic Materials. , 1999, Angewandte Chemie.

[20]  Igor Rivin,et al.  Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs , 2004 .

[21]  Michael O’Keeffe,et al.  A crystalline imine-linked 3-D porous covalent organic framework. , 2009, Journal of the American Chemical Society.

[22]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[23]  Lev Sarkisov,et al.  Computational structure characterisation tools in application to ordered and disordered porous materials , 2011 .

[24]  J. Marrot,et al.  Zeolitic polyoxometalate-based metal-organic frameworks (Z-POMOFs): computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF1. , 2009, Journal of the American Chemical Society.

[25]  Michael O'Keeffe,et al.  What do we know about three-periodic nets? , 2005 .

[26]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[27]  Jeffrey R. Long,et al.  Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties. , 2006 .

[28]  Dewi W. Lewis,et al.  Predicting the Templating Ability of Organic Additives for the Synthesis of Microporous Materials , 1995 .

[29]  Shilun Qiu,et al.  Ultrahigh Gas Storage both at Low and High Pressures in KOH-Activated Carbonized Porous Aromatic Frameworks , 2013, Scientific Reports.

[30]  I. Willner,et al.  Cover Picture: Increasing the Complexity of Periodic Protein Nanostructures by the Rolling‐Circle‐Amplified Synthesis of Aptamers (Angew. Chem. Int. Ed. 1/2008) , 2008 .

[31]  S. Bates,et al.  Analysis of Amorphous and Nanocrystalline Solids from Their X-Ray Diffraction Patterns , 2006, Pharmaceutical Research.

[32]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[33]  Omar M Yaghi,et al.  Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. , 2007, Journal of the American Chemical Society.

[34]  P. Dastidar,et al.  Zn(II) metal–organic frameworks (MOFs) derived from a bis-pyridyl-bis-urea ligand: effects of crystallization solvents on the structures and anion binding properties , 2008 .

[35]  H. Pan,et al.  Structures and Hydrogen Bonding Analysis of N,N-Dimethylformamide and N,N-Dimethylformamide−Water Mixtures by Molecular Dynamics Simulations , 2003 .

[36]  F. Illas,et al.  Apparent scarcity of low-density polymorphs of inorganic solids. , 2010, Physical review letters.

[37]  S. Qiu,et al.  Porous aromatic frameworks: Synthesis, structure and functions , 2013 .

[38]  G. Zhu,et al.  Targeted synthesis of micro–mesoporous hybrid material derived from octaphenylsilsesquioxane building units , 2013 .

[39]  Arne Thomas,et al.  Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. , 2008, Journal of the American Chemical Society.

[40]  S. Kaskel,et al.  New Element Organic Frameworks Based on Sn, Sb, and Bi, with Permanent Porosity and High Catalytic Activity , 2010, Materials.

[41]  Huai Sun,et al.  Ab initio calculations and force field development for computer simulation of polysilanes , 1995 .

[42]  Feng Deng,et al.  Gas storage in porous aromatic frameworks (PAFs) , 2011 .

[43]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[44]  M. Zwijnenburg,et al.  An extensive theoretical survey of low-density allotropy in silicon. , 2010, Physical chemistry chemical physics : PCCP.

[45]  L. Tei,et al.  Theoretical prediction of high pressure methane adsorption in porous aromatic frameworks (PAFs). , 2012, Langmuir : the ACS journal of surfaces and colloids.

[46]  H. Borrmann,et al.  The crystal and liquid structures of N,N-dimethylthioformamide and N,N-dimethylformamide showing a stronger hydrogen bonding effect for C–H⋯S than of C–H⋯O , 2000 .

[47]  A. Cooper,et al.  Porous organic polymers: distinction from disorder? , 2010, Angewandte Chemie.

[48]  Shilun Qiu,et al.  Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF) , 2012 .

[49]  A. Cooper,et al.  Modular and predictable assembly of porous organic molecular crystals , 2011, Nature.

[50]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[51]  Omar M. Yaghi,et al.  Reticular synthesis of covalent organic borosilicate frameworks. , 2008, Journal of the American Chemical Society.

[52]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[53]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[54]  M. Tafipolsky,et al.  An accurate force field model for the strain energy analysis of the covalent organic framework COF-102. , 2008, Journal of the American Chemical Society.

[55]  X. Bu,et al.  Controlling the framework formation of silver(I) coordination polymers with 1,4-bis(phenylthio)butane by varying the solvents, metal-to-ligand ratio, and counteranions. , 2002, Inorganic chemistry.

[56]  T. Maris,et al.  Constructing monocrystalline covalent organic networks by polymerization , 2013, Nature Chemistry.

[57]  Yen Wei,et al.  Targeted Synthesis of a 3D Crystalline Porous Aromatic Framework with Luminescence Quenching Ability for Hazardous and Explosive Molecules , 2012 .

[58]  J. Ilja Siepmann,et al.  Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen , 2001 .

[59]  C. Kepert,et al.  Zeolite-like crystal structure of an empty microporous molecular framework , 1999 .

[60]  Dewi W. Lewis,et al.  Synthesis of a Small‐Pore Microporous Material Using a Computationally Designed Template , 1997 .

[61]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[62]  Andrew I. Cooper,et al.  Nanoporous organic polymer networks , 2012 .

[63]  S. Kaskel,et al.  Element-organic frameworks with high permanent porosity. , 2008, Chemical communications.

[64]  Takakazu Yamamoto π-Conjugated Polymers Bearing Electronic and Optical Functionalities. Preparation by Organometallic Polycondensations, Properties, and Their Applications , 1999 .

[65]  A. Cooper,et al.  Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. , 2008, Journal of the American Chemical Society.

[66]  A. Cooper,et al.  Atomistic Simulation of Micropore Structure, Surface Area, and Gas Sorption Properties for Amorphous Microporous Polymer Networks , 2008 .

[67]  Heping Ma,et al.  Synthesis of a porous aromatic framework for adsorbing organic pollutants application , 2011 .

[68]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[69]  Sharon C. Glotzer,et al.  Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units , 2011, Comput. Phys. Commun..

[70]  William L. Jorgensen,et al.  Additions and Corrections - Optimized Intermolecular Potential Functions for Amides and Peptides. Hydration of Amides. , 1985 .

[71]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.