On the thermal conductivity of sintered metallic fibre structures

[1]  T. Bernthaler,et al.  Thermal Conductivity Computations of Sintered Hollow Sphere Structures , 2012 .

[2]  T. Fiedler,et al.  Analysis of anisotropic behaviour of thermal conductivity in cellular metals , 2011 .

[3]  A. Öchsner,et al.  Thermal analysis of aluminium foam based on micro‐computed tomography , 2011 .

[4]  T. Fiedler,et al.  Numerical simulation of Knudsen diffusion in metallic foam , 2011 .

[5]  Irina V. Belova,et al.  Theoretical and Lattice Monte Carlo analyses on thermal conduction in cellular metals , 2010 .

[6]  M. Ashby,et al.  Cellular Materials in Nature and Medicine , 2010 .

[7]  T. Bernthaler,et al.  Numerical Characterization of Anisotropic Heat Sink Composites , 2010 .

[8]  Y. Ocak,et al.  Interfacial energies of solid CuAl 2 in the CuAl 2Ag 2Al pseudo binary alloy , 2010 .

[9]  A. Öchsner,et al.  A lattice Monte Carlo analysis on thermal diffusion in syntactic hollow‐sphere structures , 2010 .

[10]  Andreas Öchsner,et al.  On the mesh dependence of non-linear mechanical finite element analysis , 2010 .

[11]  G. Tsotridis,et al.  Numerical determination of the effective thermal conductivity of fibrous materials. Application to proton exchange membrane fuel cell gas diffusion layers , 2010 .

[12]  O. Andersen,et al.  Heat Transfer and Fluid Flow in Sintered Metallic Fiber Structures , 2010 .

[13]  Andreas Öchsner,et al.  A review on thermal Lattice Monte Carlo analysis , 2010 .

[14]  A. Öchsner,et al.  Lattice Monte Carlo and Experimental Analyses of the Thermal Conductivity of Random‐Shaped Cellular Aluminum , 2009 .

[15]  E. Solórzano,et al.  Influence of Solid Phase Conductivity and Cellular Structure on the Heat Transfer Mechanisms of Cellular Materials: Diverse Case Studies , 2009 .

[16]  T. Pan Computed Tomography: from Photon Statistics to Modern Cone-Beam CT , 2009, Journal of Nuclear Medicine.

[17]  T. Bernthaler,et al.  Numerical analyses of the thermal conductivity of random hollow sphere structures , 2009 .

[18]  G. Stephani,et al.  New multifunctional lightweight materials based on cellular metals - manufacturing, properties and applications , 2009 .

[19]  A. Öchsner,et al.  Computed tomography based finite element analysis of the thermal properties of cellular aluminium , 2009 .

[20]  A. Öchsner,et al.  The Lattice Monte Carlo Method for Solving Phenomenological Mass and Thermal Diffusion Problems , 2008 .

[21]  T. Walther,et al.  3D simulation of macroscopic heat and mass transfer properties from the microstructure of wood fibre networks , 2008 .

[22]  T. Lu,et al.  Analytical considerations of thermal radiation in cellular metal foams with open cells , 2008 .

[23]  Andreas Öchsner,et al.  Calculations of the Effective Thermal Conductivity in a Model of Syntactic Metallic Hollow Sphere Structures Using a Lattice Monte Carlo Method , 2008 .

[24]  A. Ahmadi,et al.  Macroscopic thermal properties of real fibrous materials: Volume averaging method and 3D image analysis , 2006 .

[25]  T. Lu,et al.  Natural convection in metal foams with open cells , 2005 .

[26]  T. Lu,et al.  Thermal radiation in ultralight metal foams with open cells , 2004 .

[27]  J. Hyun,et al.  Effective Thermal Conductivity and Permeability of Aluminum Foam Materials1 , 2000 .

[28]  T. Lu,et al.  Thermal transport and fire retardance properties of cellular aluminium alloys , 1999 .

[29]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[30]  Harry S. Katz,et al.  Handbook of fillers and reinforcements for plastics , 1978 .