Concurrent channel access and estimation for scalable multiuser MIMO networking

This paper presents MIMO/CON, a PHY/MAC cross-layer design for multiuser MIMO wireless networks that delivers throughput scalable to many users. MIMO/CON supports concurrent channel access from uncoordinated and loosely synchronized users. This new capability allows a multi-antenna MIMO access point (AP) to fully realize its MIMO capacity gain. MIMO/CON draws insight from compressive sensing to carry out concurrent channel estimation. In the MAC layer, MIMO/CON boosts channel utilization by exploiting normal MAC layer retransmissions to recover otherwise undecodable packets in a collision. MIMO/CON has been implemented and validated on a 4×4 MIMO testbed with software-defined radios. In software simulations, MIMO/CON achieves a 210% improvement in MAC throughput over existing staggered access protocols in a 5-antenna AP scenario.

[1]  Dina Katabi,et al.  Zigzag decoding: combating hidden terminals in wireless networks , 2008, SIGCOMM '08.

[2]  Robert D. Nowak,et al.  Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels , 2010, Proceedings of the IEEE.

[3]  Dina Katabi,et al.  Interference alignment and cancellation , 2009, SIGCOMM '09.

[4]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[5]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[6]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[7]  Rittwik Jana,et al.  Measurement and modeling of an ultra-wide bandwidth indoor channel , 2004, IEEE Transactions on Communications.

[8]  Harish Viswanathan,et al.  Retransmission ≠ repeat: simple retransmission permutation can resolve overlapping channel collisions , 2010, HotNets.

[9]  Jeffrey G. Andrews,et al.  Fundamentals of WiMAX: Understanding Broadband Wireless Networking , 2007 .

[10]  Wei Wang,et al.  SAM: enabling practical spatial multiple access in wireless LAN , 2009, MobiCom '09.

[11]  Lixin Shi,et al.  Fine-grained channel access in wireless LAN , 2010, SIGCOMM '10.

[12]  Injong Rhee,et al.  Contrabass: Concurrent transmissions without coordination for ad hoc networks , 2011, 2011 Proceedings IEEE INFOCOM.

[13]  Robert W. Heath,et al.  Shifting the MIMO Paradigm , 2007, IEEE Signal Processing Magazine.

[14]  Dirk Grunwald,et al.  SMACK: a SMart ACKnowledgment scheme for broadcast messages in wireless networks , 2009, SIGCOMM '09.

[15]  Kate Ching-Ju Lin,et al.  Random access heterogeneous MIMO networks , 2011, SIGCOMM.

[16]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[17]  Justin K. Romberg,et al.  An overview of recent results on the identification of sparse channels using random probes , 2010, 49th IEEE Conference on Decision and Control (CDC).

[18]  Ramachandran Ramjee,et al.  WiFi-Nano: reclaiming WiFi efficiency through 800 ns slots , 2011, MobiCom.

[19]  Theodore S. Rappaport,et al.  Propagation measurements and models for wireless communications channels , 1995, IEEE Commun. Mag..

[20]  Thomas L. Marzetta,et al.  Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas , 2010, IEEE Transactions on Wireless Communications.

[21]  C.-C. Jay Kuo,et al.  Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review , 2007, Proceedings of the IEEE.

[22]  Himanshu Sharma,et al.  Channel Estimation in OFDM Systems , 2013 .

[23]  Sachin Katti,et al.  Strider: automatic rate adaptation and collision handling , 2011, SIGCOMM.

[24]  S.K. Wilson,et al.  On channel estimation in OFDM systems , 1995, 1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century.