Secure N-dimensional simultaneous dense coding and applications

Simultaneous dense coding (SDC) guarantees that Bob and Charlie simultaneously receive their respective information from Alice in their respective processes of dense coding. The idea is to use the so-called locking operation to “lock” the entanglement channels, thus requiring a joint unlocking operation by Bob and Charlie in order to simultaneously obtain the information sent by Alice. We present some new results on SDC: (1) We propose three SDC protocols, which use different N-dimensional entanglement (Bell state, W state and GHZ state). (2) Besides the quantum Fourier transform, two new locking operators are introduced (the double controlled-NOT operator and the SWAP operator). (3) In the case that spatially distant Bob and Charlie have to finalize the protocol by implementing the unlocking operation through communication, we improve our protocol’s fairness, with respect to Bob and Charlie, by implementing the unlocking operation in series of steps. (4) We improve the security of SDC against the intercept–resend attack. (5) We show that SDC can be used to implement a fair contract signing protocol. (6) We also show that the N-dimensional quantum Fourier transform can act as the locking operator in simultaneous teleportation of N-level quantum systems.

[1]  G. Long,et al.  General scheme for superdense coding between multiparties , 2001, quant-ph/0110112.

[2]  Silvio Micali,et al.  A Fair Protocol for Signing Contracts (Extended Abstract) , 1985, ICALP.

[3]  P. Panigrahi,et al.  Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state , 2007, 0708.3785.

[4]  Nancy A. Lynch,et al.  Impossibility of distributed consensus with one faulty process , 1985, JACM.

[5]  Haozhen Situ,et al.  Dense Coding Process with Imperfect Encoding Operations , 2013 .

[6]  N. Asokan,et al.  Optimistic protocols for fair exchange , 1997, CCS '97.

[7]  Guang-Can Guo,et al.  Probabilistic dense coding and teleportation , 2000 .

[8]  You-Cheng Li,et al.  SIMULTANEOUS QUANTUM STATE TELEPORTATION VIA THE LOCKED ENTANGLEMENT CHANNEL , 2006 .

[9]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[10]  G. Guo,et al.  Controlled dense coding using the Greenberger-Horne-Zeilinger state , 2001 .

[11]  Ujjwal Sen,et al.  DENSE CODING WITH MULTIPARTITE QUANTUM STATES , 2006 .

[12]  Artur Ekert,et al.  Dense Coding Based on Quantum Entanglement , 1995 .

[13]  Doyeol Ahn,et al.  Dense coding in entangled states , 2002 .

[14]  Andrzej Grudka,et al.  Symmetric scheme for superdense coding between multiparties , 2002 .

[15]  Daowen Qiu,et al.  Simultaneous dense coding , 2009, 0909.3613.

[16]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[17]  Benni Reznik,et al.  Deterministic dense coding with partially entangled states , 2005 .

[18]  G. Bowen Classical information capacity of superdense coding , 2001 .

[19]  A. Pati,et al.  Perfect teleportation and superdense coding with W states , 2006, quant-ph/0610001.

[20]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[21]  Cui-Lan Luo,et al.  CONTROLLED DENSE CODING VIA GENERALIZED MEASUREMENT , 2009 .

[22]  Probabilistic dense coding using a non-symmetric multipartite quantum channel , 2006, quant-ph/0601126.

[23]  P. Mateus,et al.  Fair and optimistic quantum contract signing , 2011, 1106.2922.

[24]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[25]  Xin-Wen Wang,et al.  Dense coding and teleportation with one-dimensional cluster states , 2007 .

[26]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[27]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[28]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[29]  Equally distant, partially entangled alphabet states for quantum channels , 2000, quant-ph/0009075.

[30]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[31]  Guo-Qiang Huang,et al.  CONTROLLED DENSE CODING WITH EXTENDED GHZ STATE , 2009 .

[32]  Zach DeVito,et al.  Opt , 2017 .

[33]  Y. Yeo,et al.  Teleportation and dense coding with genuine multipartite entanglement. , 2005, Physical review letters.

[34]  Scott M. Cohen,et al.  Phase boundaries in deterministic dense coding , 2008, 0810.3608.

[35]  Haozhen Situ,et al.  Controlled Simultaneous Teleportation and Dense Coding , 2014 .

[36]  Deterministic and unambiguous dense coding , 2005, quant-ph/0512169.

[37]  P. Agrawal,et al.  Probabilistic superdense coding , 2005 .

[38]  Daowen Qiu,et al.  The states of W-class as shared resources for perfect teleportation and superdense coding , 2007, quant-ph/0701030.