Neutron/γ-ray discrimination based on the property and thickness controls of scintillators using Li glass and LiCAF (Ce) in a

[1]  Masahiro Kato,et al.  Gamma-ray spectroscopy with a CeBr3 scintillator under intense γ-ray fields for nuclear decommissioning , 2021 .

[2]  K. Kamada,et al.  A cubic CeBr3 gamma-ray spectrometer suitable for the decommissioning of the Fukushima Daiichi Nuclear Power Station , 2020 .

[3]  T. Yanagida,et al.  Temperature dependence of scintillation responses in rare-earth-ions-doped LiCaAlF6 single crystals , 2020 .

[4]  Y. Yokota,et al.  Neutron–gamma discrimination based on pulse shape discrimination in a Ce:LiCaAlF6 scintillator , 2011 .

[5]  M. Miyake,et al.  Single Crystal Growth, Optical Properties and Neutron Response of ${\rm Ce}^{3+}$ Doped ${\rm LiCaAlF}_{6}$ , 2009, IEEE Transactions on Nuclear Science.

[6]  K. Shimamura,et al.  LiCaAlF6:Ce crystal: a new scintillator , 2002 .

[7]  L. Papadopoulos Scintillation response of organic and inorganic scintillators , 1999 .

[8]  O. Zelenskaya,et al.  The study of α/γ ratio for inorganic scintillation detectors , 1998 .

[9]  E. J. Fairley,et al.  Neutron scintillating glasses part III pulse decay time measurements at room temperature , 1978 .

[10]  A. R. Spowart Neutron scintillating glasses: Part 1. Activation by external charged particles and thermal neutrons , 1976 .

[11]  J. B. Czirr The α/β ratio of several organic scintillators , 1963 .

[12]  G. G. Slaughter,et al.  An improved Li6-loaded glass scintillator for neutron detection , 1961 .

[13]  R. J. Ginther,et al.  Glass Scintillators , 1958, IRE Transactions on Nuclear Science.

[14]  A. R. Spowart Neutron scintillating glasses: Part II: The effects of temperature on pulse height and conductivity , 1977 .