Functional Anatomy and Physiology of the Basal Ganglia: Non-motor Functions

[1]  G. Quirk,et al.  Activity in Prelimbic Cortex Is Necessary for the Expression of Learned, But Not Innate, Fears , 2007, The Journal of Neuroscience.

[2]  S. Haber,et al.  Reward-Related Cortical Inputs Define a Large Striatal Region in Primates That Interface with Associative Cortical Connections, Providing a Substrate for Incentive-Based Learning , 2006, The Journal of Neuroscience.

[3]  E. Vaadia,et al.  Midbrain dopamine neurons encode decisions for future action , 2006, Nature Neuroscience.

[4]  Kae Nakamura,et al.  Role of Dopamine in the Primate Caudate Nucleus in Reward Modulation of Saccades , 2006, The Journal of Neuroscience.

[5]  N. Alpert,et al.  A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. , 2006, Journal of neurosurgery.

[6]  K. Berridge,et al.  Hedonic Hot Spot in Nucleus Accumbens Shell: Where Do μ-Opioids Cause Increased Hedonic Impact of Sweetness? , 2005, The Journal of Neuroscience.

[7]  A. Graybiel The basal ganglia: learning new tricks and loving it , 2005, Current Opinion in Neurobiology.

[8]  T. Robbins,et al.  Neural systems of reinforcement for drug addiction: from actions to habits to compulsion , 2005, Nature Neuroscience.

[9]  P. Strick,et al.  The cerebellum communicates with the basal ganglia , 2005, Nature Neuroscience.

[10]  O. Hikosaka,et al.  Immediate changes in anticipatory activity of caudate neurons associated with reversal of position-reward contingency. , 2005, Journal of neurophysiology.

[11]  N. Volkow,et al.  The neural basis of addiction: a pathology of motivation and choice. , 2005, The American journal of psychiatry.

[12]  Stéphane Charpier,et al.  Feedforward Inhibition of Projection Neurons by Fast-Spiking GABA Interneurons in the Rat Striatum In Vivo , 2005, The Journal of Neuroscience.

[13]  J. Mayhew,et al.  How Visual Stimuli Activate Dopaminergic Neurons at Short Latency , 2005, Science.

[14]  A. Lozano,et al.  Deep Brain Stimulation for Treatment-Resistant Depression , 2005, Neuron.

[15]  E. Miller,et al.  Different time courses of learning-related activity in the prefrontal cortex and striatum , 2005, Nature.

[16]  M. Walton,et al.  Interactions between decision making and performance monitoring within prefrontal cortex , 2004, Nature Neuroscience.

[17]  Saori C. Tanaka,et al.  Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops , 2004, Nature Neuroscience.

[18]  M. Farah,et al.  Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. , 2004, Cerebral cortex.

[19]  R. Wise Dopamine, learning and motivation , 2004, Nature Reviews Neuroscience.

[20]  Trevor W. Robbins,et al.  Motivation and Reward , 2004, Science.

[21]  M. Nader,et al.  Cocaine Self-Administration Produces a Progressive Involvement of Limbic, Association, and Sensorimotor Striatal Domains , 2004, The Journal of Neuroscience.

[22]  Naoyuki Matsumoto,et al.  Tonically Active Neurons in the Primate Caudate Nucleus and Putamen Differentially Encode Instructed Motivational Outcomes of Action , 2004, The Journal of Neuroscience.

[23]  S. Wise,et al.  Comparison of learning‐related neuronal activity in the dorsal premotor cortex and striatum , 2004, The European journal of neuroscience.

[24]  O. Hikosaka,et al.  Reward-predicting activity of dopamine and caudate neurons--a possible mechanism of motivational control of saccadic eye movement. , 2004, Journal of neurophysiology.

[25]  Anastasia Christakou,et al.  Prefrontal Cortical–Ventral Striatal Interactions Involved in Affective Modulation of Attentional Performance: Implications for Corticostriatal Circuit Function , 2004, The Journal of Neuroscience.

[26]  M. Delgado,et al.  Modulation of Caudate Activity by Action Contingency , 2004, Neuron.

[27]  P. Calabresi,et al.  Distinct Roles of D1 and D5 Dopamine Receptors in Motor Activity and Striatal Synaptic Plasticity , 2003, The Journal of Neuroscience.

[28]  J. Hollerman,et al.  Changes in behavior-related neuronal activity in the striatum during learning , 2003, Trends in Neurosciences.

[29]  J. Gybels,et al.  Long-term Electrical Capsular Stimulation in Patients with Obsessive-Compulsive Disorder , 2003, Neurosurgery.

[30]  S. Rauch,et al.  Neurosurgery for intractable obsessive-compulsive disorder and depression: critical issues. , 2003, Neurosurgery clinics of North America.

[31]  S. Haber,et al.  Imaging Human Mesolimbic Dopamine Transmission with Positron Emission Tomography. Part II: Amphetamine-Induced Dopamine Release in the Functional Subdivisions of the Striatum , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[32]  K. A. Hadland,et al.  The anterior cingulate and reward-guided selection of actions. , 2003, Journal of neurophysiology.

[33]  R. Elliott,et al.  Differential Response Patterns in the Striatum and Orbitofrontal Cortex to Financial Reward in Humans: A Parametric Functional Magnetic Resonance Imaging Study , 2003, The Journal of Neuroscience.

[34]  P. Apicella Tonically active neurons in the primate striatum and their role in the processing of information about motivationally relevant events , 2002, The European journal of neuroscience.

[35]  N. Alpert,et al.  Predictors of Fluvoxamine Response in Contamination-related Obsessive Compulsive Disorder: A PET Symptom Provocation Study , 2002, Neuropsychopharmacology.

[36]  J. Deniau,et al.  Synaptic Convergence of Motor and Somatosensory Cortical Afferents onto GABAergic Interneurons in the Rat Striatum , 2002, Journal of Neuroscience.

[37]  Nikolaus R. McFarland,et al.  Thalamic Relay Nuclei of the Basal Ganglia Form Both Reciprocal and Nonreciprocal Cortical Connections, Linking Multiple Frontal Cortical Areas , 2002, The Journal of Neuroscience.

[38]  M. A. De Luca,et al.  Differential Expression of Motivational Stimulus Properties by Dopamine in Nucleus Accumbens Shell versus Core and Prefrontal Cortex , 2002, The Journal of Neuroscience.

[39]  A. Nambu,et al.  Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway , 2002, Neuroscience Research.

[40]  S. Haber,et al.  Amygdaloid projections to ventromedial striatal subterritories in the primate , 2002, Neuroscience.

[41]  M. A. Basso,et al.  Neuronal Activity in Substantia Nigra Pars Reticulata during Target Selection , 2002, The Journal of Neuroscience.

[42]  J. Yelnik Functional anatomy of the basal ganglia , 2002, Movement disorders : official journal of the Movement Disorder Society.

[43]  Charles J. Wilson,et al.  Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. , 2002, Journal of neurophysiology.

[44]  A. Parent,et al.  Two types of projection neurons in the internal pallidum of primates: Single‐axon tracing and three‐dimensional reconstruction , 2001, The Journal of comparative neurology.

[45]  M. Inase,et al.  Pallidal activity is involved in visuomotor association learning in monkeys , 2001, The European journal of neuroscience.

[46]  Brian Knutson,et al.  Anticipation of Increasing Monetary Reward Selectively Recruits Nucleus Accumbens , 2001, The Journal of Neuroscience.

[47]  J. Deniau,et al.  Segregation and Convergence of Information Flow through the Cortico-Subthalamic Pathways , 2001, The Journal of Neuroscience.

[48]  P. Apicella,et al.  Reward Unpredictability inside and outside of a Task Context as a Determinant of the Responses of Tonically Active Neurons in the Monkey Striatum , 2001, The Journal of Neuroscience.

[49]  S. Haber,et al.  Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in primates , 2001, Neuroscience.

[50]  W. Schultz,et al.  Influence of expectation of different rewards on behavior-related neuronal activity in the striatum. , 2001, Journal of neurophysiology.

[51]  B. Balleine,et al.  The Role of the Nucleus Accumbens in Instrumental Conditioning: Evidence of a Functional Dissociation between Accumbens Core and Shell , 2001, The Journal of Neuroscience.

[52]  Nikolaus R. McFarland,et al.  Organization of thalamostriatal terminals from the ventral motor nuclei in the macaque , 2001, The Journal of comparative neurology.

[53]  E. Vaadia,et al.  Firing Patterns and Correlations of Spontaneous Discharge of Pallidal Neurons in the Normal and the Tremulous 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Vervet Model of Parkinsonism , 2000, The Journal of Neuroscience.

[54]  Charles J. Wilson,et al.  Intrinsic Membrane Properties Underlying Spontaneous Tonic Firing in Neostriatal Cholinergic Interneurons , 2000, The Journal of Neuroscience.

[55]  P. Jerabek,et al.  Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response , 2000, Biological Psychiatry.

[56]  T. Robbins,et al.  Dissociation in Conditioned Dopamine Release in the Nucleus Accumbens Core and Shell in Response to Cocaine Cues and during Cocaine-Seeking Behavior in Rats , 2000, The Journal of Neuroscience.

[57]  E. Hirsch,et al.  Dopaminergic innervation of the subthalamic nucleus in the normal state, in MPTP‐treated monkeys, and in Parkinson's disease patients , 2000, The Journal of comparative neurology.

[58]  A. Parent,et al.  Axonal branching pattern of neurons of the subthalamic nucleus in primates , 2000, The Journal of comparative neurology.

[59]  J. Fuster,et al.  Prefrontal neurons in networks of executive memory , 2000, Brain Research Bulletin.

[60]  H. Kita,et al.  Excitatory Cortical Inputs to Pallidal Neurons Via the Subthalamic Nucleus in the Monkey , 2000 .

[61]  T. Insel,et al.  Subcortical projections of area 25 (subgenual cortex) of the macaque monkey , 2000, The Journal of comparative neurology.

[62]  Nikolaus R. McFarland,et al.  Convergent Inputs from Thalamic Motor Nuclei and Frontal Cortical Areas to the Dorsal Striatum in the Primate , 2000, The Journal of Neuroscience.

[63]  J. Wickens,et al.  Dopamine and synaptic plasticity in the neostriatum , 2000, Journal of anatomy.

[64]  M. Keshavan,et al.  Decrease in thalamic volumes of pediatric patients with obsessive-compulsive disorder who are taking paroxetine. , 2000, Archives of general psychiatry.

[65]  S. Haber,et al.  The central nucleus of the amygdala projection to dopamine subpopulations in primates , 2000, Neuroscience.

[66]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[67]  E. Rolls The orbitofrontal cortex and reward. , 2000, Cerebral cortex.

[68]  S. Hyman,et al.  Addiction, Dopamine, and the Molecular Mechanisms of Memory , 2000, Neuron.

[69]  R. Elliott,et al.  Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. , 2000, Cerebral cortex.

[70]  J. Hollerman,et al.  Reward processing in primate orbitofrontal cortex and basal ganglia. , 2000, Cerebral cortex.

[71]  Martin Lévesque,et al.  Single‐axon tracing study of neurons of the external segment of the globus pallidus in primate , 2000 .

[72]  S. Alborzian,et al.  Localized Orbitofrontal and Subcortical Metabolic Changes and Predictors of Response to Paroxetine Treatment in Obsessive-Compulsive Disorder , 1999, Neuropsychopharmacology.

[73]  C. I. Connolly,et al.  Building neural representations of habits. , 1999, Science.

[74]  P. C. Murphy,et al.  Feedback connections to the lateral geniculate nucleus and cortical response properties. , 1999, Science.

[75]  M Ashtari,et al.  Orbital frontal and amygdala volume reductions in obsessive-compulsive disorder. , 1999, Archives of general psychiatry.

[76]  A. Graybiel,et al.  Role of [corrected] nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. , 1999, Journal of neurophysiology.

[77]  C. Darian‐Smith,et al.  Comparing thalamocortical and corticothalamic microstructure and spatial reciprocity in the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar , 1999, The Journal of comparative neurology.

[78]  J. Hedreen Tyrosine hydroxylase‐immunoreactive elements in the human globus pallidus and subthalamic nucleus , 1999, The Journal of comparative neurology.

[79]  S. Charpier,et al.  In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex , 1999, Neuroscience.

[80]  R. Elliott,et al.  Differential Neural Responses during Performance of Matching and Nonmatching to Sample Tasks at Two Delay Intervals , 1999, The Journal of Neuroscience.

[81]  Nikolaus R. McFarland,et al.  The Concept of the Ventral Striatum in Nonhuman Primates , 1999, Annals of the New York Academy of Sciences.

[82]  K. Nakano,et al.  Afferent Connections to the Ventral Striatum from the Medial Prefrontal Cortex (Area 25) and the Thalamic Nuclei in the Macaque Monkey , 1999, Annals of the New York Academy of Sciences.

[83]  R. Malenka,et al.  Properties and Plasticity of Excitatory Synapses on Dopaminergic and GABAergic Cells in the Ventral Tegmental Area , 1999, The Journal of Neuroscience.

[84]  T. Robbins,et al.  Dissociation in Effects of Lesions of the Nucleus Accumbens Core and Shell on Appetitive Pavlovian Approach Behavior and the Potentiation of Conditioned Reinforcement and Locomotor Activity byd-Amphetamine , 1999, The Journal of Neuroscience.

[85]  Martin Deschênes,et al.  The organization of corticothalamic projections: reciprocity versus parity , 1998, Brain Research Reviews.

[86]  Michael E Phelps,et al.  FDG-PET predictors of response to behavioral therapy and pharmacotherapy in obsessive compulsive disorder , 1998, Psychiatry Research: Neuroimaging.

[87]  J. Hollerman,et al.  Dopamine neurons report an error in the temporal prediction of reward during learning , 1998, Nature Neuroscience.

[88]  O. Hikosaka,et al.  Differential Roles of the Frontal Cortex, Basal Ganglia, and Cerebellum in Visuomotor Sequence Learning , 1998, Neurobiology of Learning and Memory.

[89]  W. Schultz Predictive reward signal of dopamine neurons. , 1998, Journal of neurophysiology.

[90]  D. R. Smith,et al.  Behavioural assessment of mice lacking D1A dopamine receptors , 1998, Neuroscience.

[91]  Masahiko Inase,et al.  Corticostriatal input zones from the supplementary motor area overlap those from the contra- rather than ipsilateral primary motor cortex , 1998, Brain Research.

[92]  Y. Smith,et al.  Neuronal circuitry and synaptic connectivity of the basal ganglia. , 1998, Neurosurgery clinics of North America.

[93]  Karl J. Friston,et al.  Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET. , 1998, Journal of neurophysiology.

[94]  D. Plenz,et al.  Up and Down States in Striatal Medium Spiny Neurons Simultaneously Recorded with Spontaneous Activity in Fast-Spiking Interneurons Studied in Cortex–Striatum–Substantia Nigra Organotypic Cultures , 1998, The Journal of Neuroscience.

[95]  Eric Legallet,et al.  Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral states , 1997, Experimental Brain Research.

[96]  T. Robbins,et al.  Frontal-striatal cognitive deficits in patients with chronic schizophrenia. , 1997, Brain : a journal of neurology.

[97]  J. Doyon,et al.  Role of the Striatum, Cerebellum, and Frontal Lobes in the Learning of a Visuomotor Sequence , 1997, Brain and Cognition.

[98]  O. Hikosaka,et al.  Differential roles of monkey striatum in learning of sequential hand movement , 1997, Experimental Brain Research.

[99]  Y. Smith,et al.  Efferent connections of the internal globus pallidus in the squirrel monkey: II. topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus , 1997, The Journal of comparative neurology.

[100]  Edward E. Smith,et al.  Working Memory: A View from Neuroimaging , 1997, Cognitive Psychology.

[101]  P. Goldman-Rakic,et al.  Differential Activation of the Caudate Nucleus in Primates Performing Spatial and Nonspatial Working Memory Tasks , 1997, The Journal of Neuroscience.

[102]  W. Schultz Dopamine neurons and their role in reward mechanisms , 1997, Current Opinion in Neurobiology.

[103]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[104]  S. Rasmussen,et al.  Treatment strategies for chronic and refractory obsessive-compulsive disorder. , 1997, The Journal of clinical psychiatry.

[105]  O. Hassani,et al.  Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat , 1997, Brain Research.

[106]  M. Geffard,et al.  Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra , 1997, Neuroscience.

[107]  J. Bolam,et al.  Synaptic Integration of Functionally Diverse Pallidal Information in the Entopeduncular Nucleus and Subthalamic Nucleus in the Rat , 1997, The Journal of Neuroscience.

[108]  J. Mink THE BASAL GANGLIA: FOCUSED SELECTION AND INHIBITION OF COMPETING MOTOR PROGRAMS , 1996, Progress in Neurobiology.

[109]  A. D. Smith,et al.  The substantia nigra as a site of synaptic integration of functionally diverse information arising from the ventral pallidum and the globus pallidus in the rat , 1996, Neuroscience.

[110]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[111]  Giuseppe Luppino,et al.  Thalamic input to mesial and superior area 6 in the macaque monkey , 1996, The Journal of comparative neurology.

[112]  J. R. Baker,et al.  Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. , 1996, Archives of general psychiatry.

[113]  O. Hikosaka,et al.  Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. , 1996, Journal of neurophysiology.

[114]  Y. Agid,et al.  Delayed response tasks in basal ganglia lesions in man: Further evidence for a striato-frontal cooperation in behavioural adaptation , 1996, Neuropsychologia.

[115]  S. Haber,et al.  Ventral pallidostriatal pathway in the monkey: Evidence for modulation of basal ganglia circuits , 1996 .

[116]  V S Caviness,et al.  Cerebral structural abnormalities in obsessive-compulsive disorder. A quantitative morphometric magnetic resonance imaging study. , 1996, Archives of general psychiatry.

[117]  S. T. Sakai,et al.  Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): A double anterograde labeling study , 1996, The Journal of comparative neurology.

[118]  S. Haber,et al.  Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin‐D28k , 1996, The Journal of comparative neurology.

[119]  M E Phelps,et al.  Systematic changes in cerebral glucose metabolic rate after successful behavior modification treatment of obsessive-compulsive disorder. , 1996, Archives of general psychiatry.

[120]  Charles J. Wilson,et al.  Striatal interneurones: chemical, physiological and morphological characterization , 1995, Trends in Neurosciences.

[121]  S. Haber,et al.  Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: Comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity , 1995, The Journal of comparative neurology.

[122]  J. Bolam,et al.  Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[123]  Dieter Jaeger,et al.  Neuronal activity in the striatum and pallidum of primates related to the execution of externally cued reaching movements , 1995, Brain Research.

[124]  Scott T. Grafton,et al.  Functional Mapping of Sequence Learning in Normal Humans , 1995, Journal of Cognitive Neuroscience.

[125]  Y. Smith,et al.  Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA‐ and glutamate‐containing terminals in the squirrel monkey , 1995, The Journal of comparative neurology.

[126]  E. Lynd-Balta,et al.  The orbital and medial prefrontal circuit through the primate basal ganglia , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[127]  M Ashtari,et al.  Reduced caudate nucleus volume in obsessive-compulsive disorder. , 1995, Archives of general psychiatry.

[128]  S de las Heras,et al.  Organization of thalamic projections to the ventral striatum in the primate , 1995, The Journal of comparative neurology.

[129]  G. Halliday,et al.  Calbindin D28k-containing neurons are restricted to the medial substantia nigra in humans , 1995, Neuroscience.

[130]  A. Graybiel The basal ganglia , 1995, Trends in Neurosciences.

[131]  A. Parent,et al.  Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop , 1995, Brain Research Reviews.

[132]  S. Haber,et al.  Primate striatonigral projections: A comparison of the sensorimotor‐related striatum and the ventral striatum , 1994, The Journal of comparative neurology.

[133]  A. Graybiel,et al.  Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. , 1994, Science.

[134]  M Wiesendanger,et al.  Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: A multiple tracing study in macaque monkeys , 1994, The Journal of comparative neurology.

[135]  A. Parent,et al.  Pedunculopontine nucleus in the squirrel monkey: Projections to the basal ganglia as revealed by anterograde tract‐tracing methods , 1994, The Journal of comparative neurology.

[136]  A. Parent,et al.  Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey , 1994, The Journal of comparative neurology.

[137]  S. Haber,et al.  The organization of midbrain projections to the striatum in the primate: Sensorimotor-related striatum versus ventral striatum , 1994, Neuroscience.

[138]  C D Frith,et al.  Functional Anatomy of Obsessive–Compulsive Phenomena , 1994, British Journal of Psychiatry.

[139]  E. Nestler,et al.  Drug addiction: A model for the molecular basis of neural plasticity , 1993, Neuron.

[140]  T. Robbins,et al.  Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. , 1993, Brain : a journal of neurology.

[141]  Edward E. Smith,et al.  Spatial working memory in humans as revealed by PET , 1993, Nature.

[142]  A. Graybiel,et al.  Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[143]  S. Haber,et al.  The organization of the descending ventral pallidal projections in the monkey , 1993, The Journal of comparative neurology.

[144]  J. Kaas,et al.  Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys , 1992, The Journal of comparative neurology.

[145]  J. Mazziotta,et al.  Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. , 1992, Archives of general psychiatry.

[146]  W. Schultz,et al.  Neuronal activity in monkey striatum related to the expectation of predictable environmental events. , 1992, Journal of neurophysiology.

[147]  P Pietrini,et al.  Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization during pharmacotherapy. , 1992, Archives of general psychiatry.

[148]  E. Smeraldi,et al.  Increased right caudate nucleus size in obsessive-compulsive disorder: Detection with magnetic resonance imaging , 1992, Psychiatry Research: Neuroimaging.

[149]  W B Levy,et al.  Electrophysiological and pharmacological characterization of perforant path synapses in CA1: mediation by glutamate receptors. , 1992, Journal of neurophysiology.

[150]  A. Parent,et al.  Cortical input to parvalbumin-immunoreactive neurones in the putamen of the squirrel monkey , 1992, Brain Research.

[151]  P. Goldman-Rakic,et al.  Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390 , 1991, Neuroscience.

[152]  O. Hornykiewicz,et al.  Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey , 1991, Neuroscience.

[153]  J. Yelnik,et al.  Topographic distribution of the neurons of the central complex (centre médian-parafascicular complex) and of other thalamic neurons projecting to the striatum in macaques , 1991, Neuroscience.

[154]  W. Schultz,et al.  Responses of monkey midbrain dopamine neurons during delayed alternation performance , 1991, Brain Research.

[155]  P. Brotchie,et al.  A neural network model of neural activity in the monkey globus pallidus , 1991, Neuroscience Letters.

[156]  A. Parent,et al.  Topography of the projection from the central complex of the thalamus to the sensorimotor striatal territory in monkeys , 1991, The Journal of comparative neurology.

[157]  J. Hedreen,et al.  Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque , 1991, The Journal of comparative neurology.

[158]  W. T. Thach,et al.  Basal ganglia motor control. I. Nonexclusive relation of pallidal discharge to five movement modes. , 1991, Journal of neurophysiology.

[159]  G. Percheron,et al.  Parallel processing in the basal ganglia: up to a point , 1991, Trends in Neurosciences.

[160]  Shiro Nakagawa,et al.  Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata , 1990, Brain Research.

[161]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[162]  H. Bergman,et al.  Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. , 1990, Science.

[163]  A. Parent,et al.  Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey , 1990, The Journal of comparative neurology.

[164]  M. Kimura Behaviorally contingent property of movement-related activity of the primate putamen. , 1990, Journal of neurophysiology.

[165]  S. Haber,et al.  Topographic organization of the ventral striatal efferent projections in the rhesus monkey: An anterograde tracing study , 1990, The Journal of comparative neurology.

[166]  A. Parent,et al.  The centre me´dian and parafascicular thalamic nuclei project respectively to the sensorimotor and associative-limbic striatal territories in the squirrel monkey , 1990, Brain Research.

[167]  J. Rapoport,et al.  Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. , 1989, Archives of general psychiatry.

[168]  O. Hikosaka,et al.  Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. , 1989, Journal of neurophysiology.

[169]  L. Kerkérian,et al.  Ultrastructural features of NPY-containing neurons in the rat striatum , 1989, Brain Research.

[170]  B. Berger,et al.  Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine‐beta‐hydroxylase , 1989, The Journal of comparative neurology.

[171]  J. Bolam,et al.  Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat , 1988, The Journal of comparative neurology.

[172]  A. D. Smith,et al.  Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium‐size spiny neurons in the rat neostriatum , 1988, The Journal of comparative neurology.

[173]  P S Goldman-Rakic,et al.  Circuitry of the frontal association cortex and its relevance to dementia. , 1987, Archives of gerontology and geriatrics.

[174]  Y. Kubota,et al.  Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons , 1987, Brain Research.

[175]  C. Saper,et al.  Pedunculopontine tegmental nucleus of the rat: Cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum , 1987, The Journal of comparative neurology.

[176]  L. Descarries,et al.  Distribution of GABA‐immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus) , 1987, The Journal of comparative neurology.

[177]  S. Foote,et al.  The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[178]  K. Kubota,et al.  The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: A retrograde study using HRP‐gel , 1986, The Journal of comparative neurology.

[179]  D. Amaral,et al.  The amygdalostriatal projections in the monkey. An anterograde tracing study , 1985, Brain Research.

[180]  P. Goldman-Rakic,et al.  Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[181]  G. Graveland,et al.  The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum , 1985, Brain Research.

[182]  L. Heimer,et al.  Cholecystokinin innervation of the ventral striatum: A morphological and radioimmunological study , 1985, Neuroscience.

[183]  J. Rajkowski,et al.  Tonically discharging putamen neurons exhibit set-dependent responses. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[184]  G. Percheron,et al.  A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations , 1984, The Journal of comparative neurology.

[185]  G. Percheron,et al.  A Golgi analysis of the primate globus pallidus. I. Inconstant processes of large neurons, other neuronal types, and afferent axons , 1984, The Journal of comparative neurology.

[186]  V. M. Pickel,et al.  Ultrastructural localization of tyrosine hydroxylase in rat nucleus accumbens , 1984, The Journal of comparative neurology.

[187]  P. Strick,et al.  The origin of thalamic inputs to the arcuate premotor and supplementary motor areas , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[188]  J. Lehmann,et al.  The striatal cholinergic interneuron: Synaptic target of dopaminergic terminals? , 1983, Neuroscience.

[189]  André Parent,et al.  The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method , 1983, Brain Research.

[190]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[191]  P. Somogyi,et al.  Fine structural studies on a type of somatostatin‐immurioreactive neuron and its synaptic connections in the rat neostriatum: A correlated light and electron microscopic study , 1983, The Journal of comparative neurology.

[192]  P. Bailey The neurobiology of the nucleus accumbens R. B. Chronister and J. F. de France (Eds). Haer Institute for Electrophysiological Research (1981). 388 pp , 1982, Neuroscience.

[193]  P. Goldman-Rakic,et al.  Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP , 1982, The Journal of comparative neurology.

[194]  P. Somogyi,et al.  Monosynaptic input from the nucleus accumbens-ventral striatum region to retrogradely labelled nigrostriatal neurones , 1981, Brain Research.

[195]  M. Carpenter,et al.  Interconnections and organization of pallidal and subthalamic nucleus neurons in the monkey , 1981, The Journal of comparative neurology.

[196]  J W Aldridge,et al.  Sensory-motor processing in the caudate nucleus and globus pallidus: a single-unit study in behaving primates. , 1980, Canadian journal of physiology and pharmacology.

[197]  J. T. Murphy,et al.  The role of the basal ganglia in controlling a movement initiated by a visually presented cue , 1980, Brain Research.

[198]  R. E. Passingham,et al.  Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta) , 1980, Brain Research.

[199]  M. Norita,et al.  Subcortical afferents to the monkey amygdala: an HRP study , 1980, Brain Research.

[200]  W. Mehler Subcortical afferent connections of the amygdala in the monkey , 1980, The Journal of comparative neurology.

[201]  H. Nauta,et al.  Efferent projections of the subthalamic nucleus: An autoradiographic study in monkey and cat , 1978, The Journal of comparative neurology.

[202]  M. Carpenter,et al.  Projections of the globus pallidus and adjacent structures: An autoradiographic study in the monkey , 1976, The Journal of comparative neurology.

[203]  T. Pasik,et al.  A Golgi study of neuronal types in the neostriatum of monkeys , 1976, Brain Research.

[204]  J. Rafols,et al.  The neurons in the primate subthalamic nucleus: A Golgi and electron microscopic study , 1976, The Journal of comparative neurology.

[205]  M. Carpenter,et al.  Organization of pallidothalamic projections in the rhesus monkey , 1973, The Journal of comparative neurology.

[206]  C. Fox,et al.  The spiny neurons in the primate striatum: a Golgi and electron microscopic study. , 1972, Journal fur Hirnforschung.

[207]  T. Powell,et al.  The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[208]  N Butters,et al.  Effect of caudate and septal nuclei lesions on resistance to extinction and delayed-alternation. , 1968, Journal of comparative and physiological psychology.

[209]  M. Mishkin,et al.  Comparison of the effects of frontal and caudate lesions on delayed response and alternation in monkeys. , 1960, Journal of comparative and physiological psychology.

[210]  J. D. Boyd,et al.  Cytoarchitecture of the Human Brain Stem , 1955 .

[211]  M. E. Anderson,et al.  An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta , 2004, Experimental Brain Research.

[212]  W. Schultz,et al.  Responses to reward in monkey dorsal and ventral striatum , 2004, Experimental Brain Research.

[213]  M. E. Anderson,et al.  A quantitative analysis of pallidal discharge during targeted reaching movement in the monkey , 2004, Experimental Brain Research.

[214]  O. Hikosaka,et al.  Reward-dependent spatial selectivity of anticipatory activity in monkey caudate neurons. , 2002, Journal of neurophysiology.

[215]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.

[216]  E. Jones Chapter I - The thalamus of primates , 1998 .

[217]  N. Alpert,et al.  Probing striatal function in obsessive-compulsive disorder: a PET study of implicit sequence learning. , 1997, The Journal of neuropsychiatry and clinical neurosciences.

[218]  Anders Björklund,et al.  The primate nervous system , 1997 .

[219]  C. Gerfen,et al.  The frontal cortex-basal ganglia system in primates. , 1996, Critical reviews in neurobiology.

[220]  T. Sejnowski,et al.  How the Basal Ganglia Make Decisions , 1996 .

[221]  E. Hirsch,et al.  Is dopaminergic cell death accompanied by concomitant nerve plasticity? , 1996, Advances in neurology.

[222]  A. Graybiel,et al.  Functions of the Cortico-Basal Ganglia Loop , 1995, Springer Japan.

[223]  O. Hikosaka,et al.  Procedural Learning in the Monkey , 1995 .

[224]  N. Alpert,et al.  Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. , 1994, Archives of general psychiatry.

[225]  R. Passingham The frontal lobes and voluntary action , 1993 .

[226]  A. Parent,et al.  The heterogeneity of the mesostriatal dopaminergic system as revealed in normal and parkinsonian monkeys. , 1993, Advances in neurology.

[227]  R. Druga,et al.  Thalamocaudate projections in the macaque monkey (a horseradish peroxidase study). , 1991, Journal fur Hirnforschung.

[228]  K. Bergström,et al.  Magnetic resonance imaging of stereotactic radiosurgical lesions in the internal capsule. , 1986, Acta radiologica. Supplementum.

[229]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[230]  André Parent,et al.  Comparative neurobiology of the basal ganglia , 1986 .

[231]  S. Haber Neurotransmitters in the human and nonhuman primate basal ganglia. , 1986, Human neurobiology.

[232]  J. Yelnik,et al.  The Primate Striato-Pallido-Nigral System: An Integrative System for Cortical Information , 1984 .

[233]  J. McKenzie,et al.  The Basal ganglia : structure and function , 1984 .

[234]  K. Akert,et al.  Relationships of precentral premotor and prefrontal cortex to the mediodorsal and intralaminar nuclei of the monkey thalamus. , 1980, Acta neurobiologiae experimentalis.

[235]  J. Szabo Strionigral and Nigrostriatal Connections , 1979 .

[236]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[237]  Carpenter Mb Anatomical organization of the corpus striatum and related nuclei. , 1976 .

[238]  J. Rafols,et al.  The primate globus pallidus: a Golgi and electron microscopic study. , 1974, Journal fur Hirnforschung.

[239]  J. Rafols,et al.  The aspiny neurons and the glia in the primate striatum: a golgi and electron microscopic study. , 1971, Journal fur Hirnforschung.

[240]  W. Nauta,et al.  Projections of the lentiform nucleus in the monkey. , 1966, Brain research.