A de Bruijn Notation for Higher-Order Rewriting

We propose a formalism for higher-order rewriting in de Bruijn notation. This notation not only is used for terms (as usually done in the literature) but also for metaterms, which are the syntactical objects used to express general higher-order rewrite systems. We give formal translations from higher-order rewriting with names to higher-order rewriting with de Bruijn indices, and vice-versa. These translations can be viewed as an interface in programming languages based on higher-order rewrite systems, and they are also used to show some properties, namely, that both formalisms are operationally equivalent, and that confluence is preserved when translating one formalism into the other.

[1]  Kristoffer Høgsbro Rose,et al.  Combinatory Reduction Systems with Explicit Substitution that Preserve Strong Nomalisation , 1996, RTA.

[2]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[3]  de Ng Dick Bruijn A namefree lambda calculus with facilities for internal definition of expressions and segments , 1978 .

[4]  Bruno Pagano Des calculs de substitution explicite et de leur application a la compilation et de leur application a la compilation des langages fonctionnels , 1998 .

[5]  CurienPierre-Louis,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996 .

[6]  F. vanRaamsdonk,et al.  Weak orthogonality implies confluence: the higher-order case , 1994 .

[7]  Claude Kirchner,et al.  Higher-order unification via explicit substitutions , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[8]  J. Roger Hindley,et al.  Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.

[9]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[10]  Jean-Jacques Lévy,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.

[11]  Fairouz Kamareddine,et al.  Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi , 1998, Log. J. IGPL.

[12]  David A. Wolfram,et al.  The Clausal Theory of Types , 1993 .

[13]  Vincent van Oostrom,et al.  Context-sensitive conditional expression reduction systems , 1995, Electron. Notes Theor. Comput. Sci..

[14]  Randy Pollack,et al.  Closure Under Alpha-Conversion , 1994, TYPES.

[15]  de Ng Dick Bruijn Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[16]  Pierre-Louis Curien Categorical Combinators, Sequential Algorithms, and Functional Programming , 1993, Progress in Theoretical Computer Science.

[17]  Kristoffer Høgsbro Rose,et al.  Explicit Cyclic Substitutions , 1992, CTRS.

[18]  Vincent van Oostrom,et al.  Weak Orthogonality Implies Con(cid:2)uence(cid:3) the Higher(cid:4)Order Case , 2011 .

[19]  R. C. de Vrijer,et al.  The context calculus lambda-c. , 1999 .

[20]  Cj Roel Bloo,et al.  Preservation of termination for explicit substitution , 1997 .

[21]  Tobias Nipkow,et al.  Higher-order critical pairs , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[22]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[23]  M. Sørensen,et al.  The λΔ-calculus , 1994 .

[24]  F. Raamsdonk Confluence and Normalisation of Higher-Order Rewriting , 1996 .