A de Bruijn Notation for Higher-Order Rewriting
暂无分享,去创建一个
[1] Kristoffer Høgsbro Rose,et al. Combinatory Reduction Systems with Explicit Substitution that Preserve Strong Nomalisation , 1996, RTA.
[2] Jan Willem Klop,et al. Combinatory reduction systems , 1980 .
[3] de Ng Dick Bruijn. A namefree lambda calculus with facilities for internal definition of expressions and segments , 1978 .
[4] Bruno Pagano. Des calculs de substitution explicite et de leur application a la compilation et de leur application a la compilation des langages fonctionnels , 1998 .
[5] CurienPierre-Louis,et al. Confluence properties of weak and strong calculi of explicit substitutions , 1996 .
[6] F. vanRaamsdonk,et al. Weak orthogonality implies confluence: the higher-order case , 1994 .
[7] Claude Kirchner,et al. Higher-order unification via explicit substitutions , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.
[8] J. Roger Hindley,et al. Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.
[9] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[10] Jean-Jacques Lévy,et al. Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.
[11] Fairouz Kamareddine,et al. Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi , 1998, Log. J. IGPL.
[12] David A. Wolfram,et al. The Clausal Theory of Types , 1993 .
[13] Vincent van Oostrom,et al. Context-sensitive conditional expression reduction systems , 1995, Electron. Notes Theor. Comput. Sci..
[14] Randy Pollack,et al. Closure Under Alpha-Conversion , 1994, TYPES.
[15] de Ng Dick Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[16] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms, and Functional Programming , 1993, Progress in Theoretical Computer Science.
[17] Kristoffer Høgsbro Rose,et al. Explicit Cyclic Substitutions , 1992, CTRS.
[18] Vincent van Oostrom,et al. Weak Orthogonality Implies Con(cid:2)uence(cid:3) the Higher(cid:4)Order Case , 2011 .
[19] R. C. de Vrijer,et al. The context calculus lambda-c. , 1999 .
[20] Cj Roel Bloo,et al. Preservation of termination for explicit substitution , 1997 .
[21] Tobias Nipkow,et al. Higher-order critical pairs , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.
[22] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[23] M. Sørensen,et al. The λΔ-calculus , 1994 .
[24] F. Raamsdonk. Confluence and Normalisation of Higher-Order Rewriting , 1996 .