Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers.

Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.

Georg Weidenspointner | Heike Soltau | Anton Barty | Veit Elser | Joachim Schulz | Matthias Frank | Heinz Graafsma | Peter Holl | Andrew V. Martin | Emanuele Pedersoli | Jan Steinbrener | Andreas Hartmann | Stefano Marchesini | Filipe R N C Maia | Miriam Barthelmess | Christoph Bostedt | Tomas Ekeberg | Benjamin Erk | Holger Fleckenstein | Lutz Foucar | Lars Gumprecht | Robert Hartmann | Stephan Kassemeyer | Nils Kimmel | Mengning Liang | Lukas Lomb | Karol Nass | Daniel Rolles | Benedikt Rudek | Artem Rudenko | Dmitri Starodub | Joachim Ullrich | Ilme Schlichting | Stefan Hau-Riege | Andrew V Martin | N Duane Loh | Michael J Bogan | Christina Y Hampton | Raymond G Sierra | Robert L Shoeman | Sascha W Epp | Helmut Hirsemann | Cornelia Wunderer | Christian Reich | Andrew Aquila | John Bozek | Sasa Bajt | Henry N Chapman | S. Marchesini | H. Chapman | M. Bogan | M. Frank | A. Barty | F. Maia | S. Bajt | S. Hau-Riege | C. Bostedt | J. Bozek | P. Bucksbaum | N. Loh | C. Hampton | D. Starodub | R. Sierra | A. Aquila | J. Schulz | L. Lomb | J. Steinbrener | R. Shoeman | S. Kassemeyer | S. Epp | B. Erk | R. Hartmann | D. Rolles | A. Rudenko | B. Rudek | L. Foucar | N. Kimmel | G. Weidenspointner | E. Pedersoli | M. Hunter | L. Gumprecht | N. Coppola | C. Wunderer | H. Graafsma | T. Ekeberg | M. Hantke | H. Fleckenstein | H. Hirsemann | K. Nass | H. Tobias | G. Farquar | C. Reich | A. Hartmann | H. Soltau | M. Barthelmess | J. Ullrich | I. Schlichting | V. Elser | P. Holl | M. Liang | L. Strueder | Nicola Coppola | Mark S Hunter | Max Hantke | Hyung Joo Park | Guenter Hauser | Herbert J Tobias | George R Farquar | W Henry Benner | Lothar Strueder | Philip Bucksbaum | W. Benner | G. Hauser | Hyung-Jo Park

[1]  D. R. Luke Relaxed Averaged Alternating Reflections for Diffraction Imaging , 2004, math/0405208.

[2]  Christina Y. Hampton,et al.  Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology , 2010 .

[3]  Andrew V. Martin,et al.  Noise-robust coherent diffractive imaging with a single diffraction pattern , 2012 .

[4]  Veit Elser Phase retrieval by iterated projections. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[6]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[7]  H. Chapman,et al.  Aerosol sample preparation methods for X-ray diffractive imaging: Size-selected spherical nanoparticles on silicon nitride foils , 2006 .

[8]  D. R. Luke Relaxed averaged alternating reflections for diffraction imaging , 2004, math/0405208.

[9]  Garth J. Williams,et al.  Single mimivirus particles intercepted and imaged with an X-ray laser , 2011, Nature.

[10]  A. H. Walenta,et al.  Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources , 2010 .

[11]  S. Weinbruch,et al.  Transmission electron microscopical and aerosol dynamical characterization of soot aerosols , 2003 .

[12]  W. H. Benner,et al.  Single particle X-ray diffractive imaging. , 2007, Nano letters.

[13]  J. Kirz,et al.  Biological imaging by soft x-ray diffraction microscopy , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  E. Garwin,et al.  Aerosol generation by spark discharge , 1988 .

[15]  W. H. Benner,et al.  Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight , 2012, Nature.

[16]  S. Marchesini,et al.  X-ray image reconstruction from a diffraction pattern alone , 2003, physics/0306174.

[17]  S Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[18]  W. H. Benner,et al.  Femtosecond diffractive imaging with a soft-X-ray free-electron laser , 2006, physics/0610044.

[19]  Andrew V. Martin,et al.  Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering. , 2011, Optics express.

[20]  Veit Elser,et al.  Recovering magnetization distributions from their noisy diffraction data. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  D. Sayre,et al.  Electronic Reprint Foundations of Crystallography Reconstruction of a Yeast Cell from X-ray Diffraction Data Foundations of Crystallography Reconstruction of a Yeast Cell from X-ray Diffraction Data , 2022 .

[22]  S. Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[23]  Georg Weidenspointner,et al.  Sensing the wavefront of x-ray free-electron lasers using aerosol spheres. , 2013, Optics express.

[24]  David van der Spoel,et al.  Hawk: the image reconstruction package for coherent X‐ray diffractive imaging , 2010 .