Modelling snow accumulation with a geographic information system

Snow courses that measure snow water equivalent (SWE) are clustered and limited in areal coverage in Idaho. This study used a cell-based geographic information system and multiple regression models to construct SWE surfaces from the snow course data by month (January to May) and by watershed. SWE was the dependent variable and location and topographic variables derived from a digital elevation model were used as the independent variables. Multiple regression performed better than the traditional interpolation methods for SWE estimation. The estimated SWE surface can be displayed at different spatial scales through neighbourhood operations, or used directly as a map layer for hydrologic modelling.

[1]  A. Martínez-cob,et al.  Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain , 1996 .

[2]  C. Obled,et al.  Objective analyses and mapping techniques for rainfall fields: An objective comparison , 1982 .

[3]  S. K. Jenson,et al.  Extracting topographic structure from digital elevation data for geographic information-system analysis , 1988 .

[4]  Noel A Cressie,et al.  A comparison of geostatistical methodologies used to estimate snow water equivalent , 1996 .

[5]  G. L. Johnson,et al.  Topographic and Atmospheric Influences on Precipitation Variability over a Mountainous Watershed , 1995 .

[6]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .

[7]  Thomas B. McKee,et al.  HYDROCLIMATIC VARIABILITY IN THE ROCKY MOUNTAINS , 1991 .

[8]  Nel Caine An Elevational Control of Peak Snowpack Variability , 1975 .

[9]  D. Marks,et al.  A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain , 1992 .

[10]  Michael F. Goodchild,et al.  GIS and land-surface-subsurface modeling. , 1993 .

[11]  Clayton L. Hanson,et al.  MEAN AREAL PRECIPITATION FOR DAILY HYDROLOGIC MODELING IN MOUNTAINOUS REGIONS , 1994 .

[12]  N. Lam Spatial Interpolation Methods: A Review , 1983 .

[13]  C. Dana Tomlin,et al.  Geographic Information Systems and Cartographic Modelling , 1990 .

[14]  Martin Charlton,et al.  The Geography of Parameter Space: An Investigation of Spatial Non-Stationarity , 1996, Int. J. Geogr. Inf. Sci..

[15]  J. Salas,et al.  A COMPARATIVE ANALYSIS OF TECHNIQUES FOR SPATIAL INTERPOLATION OF PRECIPITATION , 1985 .

[16]  M. F. Hutchinson,et al.  Interpolating Mean Rainfall Using Thin Plate Smoothing Splines , 1995, Int. J. Geogr. Inf. Sci..

[17]  R. Lyman Ott.,et al.  An introduction to statistical methods and data analysis , 1977 .

[18]  John Gerrard Mountain Environments: An Examination of the Physical Geography of Mountains , 1990 .

[19]  Rafael L. Bras,et al.  Optimal estimators of mean areal precipitation in regions of orographic influence , 1982 .

[20]  Arthur H. Robinson,et al.  A CORRELATION AND REGRESSION ANALYSIS APPLIED TO RURAL FARM POPULATION DENSITIES IN THE GREAT PLAINS1 , 1961 .

[21]  J. Gerrard,et al.  Mountain Environments: An Examination of the Physical Geography of Mountains , 1990 .

[22]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[23]  Roger G. Barry,et al.  Mountain weather and climate , 1982 .