The K-D Heap: An Efficient Multi-dimensional Priority Queue
暂无分享,去创建一个
[1] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[2] Jon Louis Bentley,et al. Multidimensional binary search trees used for associative searching , 1975, CACM.
[3] Jean Vuillemin,et al. A data structure for manipulating priority queues , 1978, CACM.
[4] Thomas Strothotte,et al. An Algorithm for Merging Heaps , 1985, Acta Informatica.
[5] Enrico Nardelli,et al. A Pointer-Free Data Structure for Merging Heaps and Min-Max Heaps , 1991, Theor. Comput. Sci..
[6] Nicola Santoro,et al. Min-max heaps and generalized priority queues , 1986, CACM.
[7] Svante Carlsson,et al. The Deap-A Double-Ended Heap to Implement Double-Ended Priority Queues , 1987, Inf. Process. Lett..
[8] Mark R. Brown,et al. Implementation and Analysis of Binomial Queue Algorithms , 1978, SIAM J. Comput..
[9] Robert E. Tarjan,et al. Relaxed heaps: an alternative to Fibonacci heaps with applications to parallel computation , 1988, CACM.
[10] Stephan Olariu,et al. A Mergeable Double-Ended Priority Queue , 1991, Comput. J..
[11] J. Ian Munro,et al. An Implicit Binomial Queue with Constant Insertion Time , 1988, SWAT.
[12] Robert E. Tarjan,et al. Self-Adjusting Heaps , 1986, SIAM J. Comput..
[13] Jörg-Rüdiger Sack,et al. Bounds for min-max heaps , 1987, BIT.
[14] Robert E. Tarjan,et al. Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.