Enhanced transverse shear strain shell formulation applied to large elasto‐plastic deformation problems

In this work, a previously proposed Enhanced Assumed Strain (EAS) finite element formulation for thin shells is revised and extended to account for isotropic and anisotropic material non-linearities. Transverse shear and membrane-locking patterns are successfully removed from the displacement-based formulation. The resultant EAS shell finite element does not rely on any other mixed formulation, since the enhanced strain field is designed to fulfil the null transverse shear strain subspace coming from the classical degenerated formulation. At the same time, a minimum number of enhanced variables is achieved, when compared with previous works in the field. Non-linear effects are treated within a local reference frame affected by the rigid-body part of the total deformation. Additive and multiplicative update procedures for the finite rotation degrees-of-freedom are implemented to correctly reproduce mid-point configurations along the incremental deformation path, improving the overall convergence rate. The stress and strain tensors update in the local frame, together with an additive treatment of the EAS terms, lead to a straightforward implementation of non-linear geometric and material relations. Accuracy of the implemented algorithms is shown in isotropic and anisotropic elasto-plastic problems. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  M. Crisfield,et al.  A FINITE ELEMENT FORMULATION FOR 3‐D CONTINUA USING THE CO‐ROTATIONAL TECHNIQUE , 1996 .

[2]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[3]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[4]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[5]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  J. Chróścielewski,et al.  Genuinely resultant shell finite elements accounting for geometric and material non-linearity , 1992 .

[7]  A. A. Fernandes,et al.  Analysis of 3D problems using a new enhanced strain hexahedral element , 2003 .

[8]  Dominique Chapelle,et al.  Some new results and current challenges in the finite element analysis of shells , 2001, Acta Numerica.

[9]  Mingrui Li,et al.  The finite deformation theory for beam, plate and shell. Part V. The shell element with drilling degree of freedom based on Biot strain , 2000 .

[10]  T. Hughes Numerical Implementation of Constitutive Models: Rate-Independent Deviatoric Plasticity , 1984 .

[11]  A. Ibrahimbegovic,et al.  Stress resultant geometrically nonlinear shell theory with drilling rotations—Part II. Computational aspects , 1994 .

[12]  R. M. Natal Jorge,et al.  New enhanced strain elements for incompressible problems , 1999 .

[13]  K. Bathe Finite Element Procedures , 1995 .

[14]  Joachim Danckert,et al.  Integral Hydro-Bulge Forming of Pressure Vessel Heads , 1999 .

[15]  K. C. Park,et al.  Improved strain interpolation for curvedC° elements , 1986 .

[16]  D. Flanagan,et al.  An accurate numerical algorithm for stress integration with finite rotations , 1987 .

[17]  Rakesh K. Kapania,et al.  A survey of recent shell finite elements , 2000 .

[18]  P. Pinsky,et al.  Numerical integration of rate constitutive equations in finite deformation analysis , 1983 .

[19]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[20]  E. Ramm,et al.  Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept , 1996 .

[21]  Arif Masud,et al.  Three-Dimensional Corotational Framework for Elasto-Plastic Analysis of Multilayered Composite Shells , 2000 .

[22]  Klaus-Jürgen Bathe,et al.  A geometric and material nonlinear plate and shell element , 1980 .

[23]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[24]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[25]  R. Hauptmann,et al.  Extension of the ‘solid‐shell’ concept for application to large elastic and large elastoplastic deformations , 2000 .

[26]  G. M. Faeth Request for Nomination of Articles for the Special 100th Anniversary of Flight Issue , 2000 .

[27]  M. W. Chernuka,et al.  A simple four-noded corotational shell element for arbitrarily large rotations , 1994 .

[28]  Peter Wriggers,et al.  Finite element concepts for finite elastoplastic strains and isotropic stress response in shells: theoretical and computational analysis , 1999 .

[29]  Cristián Zegers Ariztía,et al.  Manual , 2002 .

[30]  X. G. Tan,et al.  Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics , 2003 .

[31]  R. M. Natal Jorge,et al.  On the use of an enhanced transverse shear strain shell element for problems involving large rotations , 2003 .

[32]  M. Crisfield An arc‐length method including line searches and accelerations , 1983 .

[33]  E. Ramm,et al.  Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .

[34]  Carlo Sansour,et al.  Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assesment of hybrid stress, hybrid strain and enhanced strain elements , 2000 .

[35]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[36]  Ekkehard Ramm,et al.  EAS‐elements for two‐dimensional, three‐dimensional, plate and shell structures and their equivalence to HR‐elements , 1993 .

[37]  Robert D. Cook,et al.  Further development of a three‐node triangular shell element , 1993 .

[38]  M. W. Chernuka,et al.  A CO-ROTATIONAL FORMULATION FOR GEOMETRICALLY NONLINEAR FINITE ELEMENT ANALYSIS OF SPATIAL BEAMS , 1994 .

[39]  I. Doghri Mechanics of Deformable Solids , 2000 .

[40]  X. Peng,et al.  A consistent co‐rotational formulation for shells using the constant stress/constant moment triangle , 1992 .

[41]  Dieter Weichert,et al.  Nonlinear Continuum Mechanics of Solids , 2000 .

[42]  S. H. Zhang,et al.  Research into the dieless hydroforming of double layer spherical vessels , 1994 .

[43]  L. Franca,et al.  An algorithm to compute the square root of a 3 × 3 positive definite matrix , 1989 .

[44]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[45]  Sven Klinkel,et al.  A continuum based 3d-shell element for laminated structures , 1999 .

[46]  E. Stein,et al.  A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains , 1996 .

[47]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[48]  E. P. Popov,et al.  Accuracy and stability of integration algorithms for elastoplastic constitutive relations , 1985 .

[49]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[50]  K. Bathe,et al.  Fundamental considerations for the finite element analysis of shell structures , 1998 .

[51]  Robert L. Taylor,et al.  Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems☆ , 1993 .

[52]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[53]  Frédéric Barlat,et al.  Development of a one point quadrature shell element for nonlinear applications with contact and anisotropy , 2002 .

[54]  Arif Masud,et al.  A stabilized 3-D co-rotational formulation for geometrically nonlinear analysis of multi-layered composite shells , 2000 .

[55]  Renato Natal Jorge,et al.  Quadrilateral elements for the solution of elasto‐plastic finite strain problems , 2001 .

[56]  R. D. Krieg,et al.  On the numerical implementation of inelastic time dependent and time independent, finite strain constitutive equations in structural mechanics☆ , 1982 .

[57]  Ted Belytschko,et al.  Resultant-stress degenerated-shell element , 1986 .

[58]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[59]  Dominique Chapelle,et al.  A shell problem ‘highly sensitive’ to thickness changes , 2003 .

[60]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[61]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[62]  Atef F. Saleeb,et al.  A hybrid/mixed model for non‐linear shell analysis and its applications to large‐rotation problems , 1990 .

[63]  D. Chandrasekharaiah,et al.  Mechanics of Deformable Solids: Linear, Nonlinear, Analytical and Computational Aspects , 2000 .

[64]  James F. Doyle,et al.  Nonlinear analysis of thin-walled structures : statics, dynamics, and stability , 2001 .

[65]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part V: Nonlinear plasticity: formulation and integration algorithms , 1992 .

[66]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[67]  Renato Natal Jorge,et al.  Development of shear locking‐free shell elements using an enhanced assumed strain formulation , 2002 .

[68]  Dong-Yol Yang,et al.  Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials , 1999 .

[69]  Wilfried B. Krätzig,et al.  An efficient formulation of integration algorithms for elastoplastic shell analysis based on layered finite element approach , 1997 .

[70]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[71]  Dominique Chapelle,et al.  The mathematical shell model underlying general shell elements , 2000 .

[72]  S. H. Zhang,et al.  The technology of the hydro-bulging of whole spherical vessels and experimental analysis , 1989 .

[73]  R. Hauptmann,et al.  On volumetric locking of low‐order solid and solid‐shell elements for finite elastoviscoplastic deformations and selective reduced integration , 2000 .

[74]  M. Harnau,et al.  About linear and quadratic Solid-Shell elements at large deformations , 2002 .

[75]  R. M. Natal Jorge,et al.  An enhanced strain 3D element for large deformation elastoplastic thin-shell applications , 2004 .

[76]  M. A. Crisfield,et al.  Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics , 1997 .

[77]  Peter Betsch,et al.  Numerical implementation of multiplicative elasto-plasticity into assumed strain elements with application to shells at large strains , 1999 .

[78]  E. A. de Souza Neto,et al.  On the determination of the path direction for arc-length methods in the presence of bifurcations and `snap-backs' , 1999 .

[79]  Medhat A. Haroun,et al.  Reduced and selective integration techniques in the finite element analysis of plates , 1978 .

[80]  Sven Klinkel,et al.  A geometrical non‐linear brick element based on the EAS‐method , 1997 .

[81]  K. Schweizerhof,et al.  On a systematic development of trilinear three-dimensional solid elements based on Simo's enhanced strain formulation , 1996 .

[82]  F. Barlat,et al.  A six-component yield function for anisotropic materials , 1991 .

[83]  Alexander G Iosilevich,et al.  An evaluation of the MITC shell elements , 2000 .

[84]  S. Reese,et al.  A comparison of three-dimensional continuum and shell elements for finite plasticity , 1996 .

[85]  E. Stein,et al.  On the parametrization of finite rotations in computational mechanics: A classification of concepts with application to smooth shells , 1998 .

[86]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[87]  Received September,et al.  A new volumetric and shear locking-free 3D enhanced strain element , 2003 .

[88]  Ekkehard Ramm,et al.  Consistent linearization in elasto‐plastic shell analysis , 1988 .

[89]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[90]  Christian Miehe,et al.  A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains , 1998 .

[91]  Boštjan Brank,et al.  On large deformations of thin elasto-plastic shells: Implementation of a finite rotation model for quadrilateral shell element , 1997 .

[92]  Sven Klinkel,et al.  A continuum based three-dimensional shell element for laminated structures , 1999 .

[93]  Chen Zhida,et al.  Large deformation analysis of shells with finite element method based on the S-R decomposition theorem , 1988 .