Bayesian Function Learning Using MCMC Methods

The paper deals with the problem of reconstructing a continuous 1D function from discrete noisy samples. The measurements may also be indirect in the sense that the samples may be the output of a linear operator applied to the function. Bayesian estimation provides a unified treatment of this class of problems. We show that a rigorous Bayesian solution can be efficiently implemented by resorting to a Markov chain Monte Carlo (MCMC) simulation scheme. In particular, we discuss how the structure of the problem can be exploited in order to improve the computational and convergence performances. The effectiveness of the proposed scheme is demonstrated on two classical benchmark problems as well as on the analysis of IVGTT (IntraVenous glucose tolerance test) data, a complex identification-deconvolution problem concerning the estimation of the insulin secretion rate following the administration of an intravenous glucose injection.

[1]  L PhillipsDavid A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962 .

[2]  P. Bloomfield,et al.  A Time Series Approach To Numerical Differentiation , 1974 .

[3]  M. Pitt,et al.  Likelihood analysis of non-Gaussian measurement time series , 1997 .

[4]  Adrian F. M. Smith,et al.  Automatic Bayesian curve fitting , 1998 .

[5]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[6]  B. Hunt The inverse problem of radiography , 1970 .

[7]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[8]  G. Wahba Spline models for observational data , 1990 .

[9]  Giuseppe De Nicolao,et al.  Dynamic Probabilistic Networks for Modelling and Identifying Dynamic Systems: a MCMC Approach , 1997, Intell. Data Anal..

[10]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[11]  K. Polonsky,et al.  Peripheral insulin parallels changes in insulin secretion more closely than C-peptide after bolus intravenous glucose administration. , 1988, The Journal of clinical endocrinology and metabolism.

[12]  C. Cobelli,et al.  A stochastic deconvolution method to reconstruct insulin secretion rate after a glucose stimulus , 1996, IEEE Transactions on Biomedical Engineering.

[13]  Giuseppe De Nicolao,et al.  Nonparametric input estimation in physiological systems: Problems, methods, and case studies , 1997, Autom..

[14]  Cristiana Larizza,et al.  A Unified Approach for Modeling Longitudinal and Failure Time Data, With Application in Medical Monitoring , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Sylvia Richardson,et al.  Inference and monitoring convergence , 1995 .

[16]  G. Wahba Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .

[17]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[18]  Walter R. Gilks,et al.  An archaeological example: radiocarbon dating , 1995 .

[19]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[21]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[22]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[23]  D. Thomas,et al.  Censored survival models for genetic epidemiology: A gibbs sampling approach , 1994, Genetic epidemiology.

[24]  S. Twomey,et al.  On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.

[25]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[26]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[27]  D. Commenges The deconvolution problem: Fast algorithms including the preconditioned conjugate-gradient to compute a MAP estimator , 1984 .

[28]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[29]  P. Hansen Numerical tools for analysis and solution of Fredholm integral equations of the first kind , 1992 .

[30]  A. F. M. Smith,et al.  Automatic Bayesian curve ® tting , 1998 .

[31]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[32]  R. Kohn,et al.  Nonparametric spline regression with prior information , 1993 .

[33]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[34]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[35]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[36]  M. Bertero Linear Inverse and III-Posed Problems , 1989 .